
jMBus User Guide

Fraunhofer Institute for Solar Energy Systems ISE

openmuc.org

Table of Contents

1. Intro . 1

1.1. Dependencies . 1

1.2. Command Line Applications . 1

1.3. Distribution . 2

2. How M-Bus Works . 2

2.1. Wired M-Bus . 2

2.1.1. Primary Addressing . 2

2.1.2. Secondary Addressing . 3

2.2. Wireless M-Bus . 3

2.3. Variable Data Structure . 4

3. Using jMBus . 5

3.1. Wired M-Bus . 5

3.2. Wireless M-Bus . 6

3.3. Variable Data Structure . 6

4. Modifying and Compiling jMBus . 6

5. Authors . 6

1. Intro

jMBus is an implementation of the M-Bus wired and wireless protocols. You can use it to program individual M-Bus

wired masters or wireless M-Bus receivers that read meters such as gas, water, heat, or electricity meters. jMBus is

licensed under the Mozilla Public License (MPL) v.2.0.

For M-Bus wired communication the library communicates over a serial port or USB port with an M-Bus

master/level-converter device. We have successfully tested the library with level-converters from Relay.

For wireless M-Bus communication the library requires a transceiver usually connected via USB. Currently jMBus

support transceivers from Amber, IMST and Radiocrafts. The library was tested with the AMB8465-M and

AMB8665-M from Amber, the IM871A-USB from IMST and the RC1180-MBUS rom Radiocrafts. The jMBus

library only supports passive listening for messages in modes S and T at the moment. Encryption mode 5 (AES with

CBC and IV) is supported.

1.1. Dependencies

jMBus depends on the Java library jRxTx. jRxTx is a fork of RxTx and is hosted at https://github.com/openmuc/jrxtx.

The library is licensed under the LGPL(v2.1 or later) + linking exception.

jRxTx consists of a Java part located in the dependencies folder of the distribution and a native part that is equivalent

to that of RxTx. Note that you have to install the native part of RxTx as explained in our FAQ.

1.2. Command Line Applications

One command line applications is part of the library. You can execute this using the script found in the folder "run-

scripts". The file ending with .sh is a shell script for Unix/Linux/Mac. The file ending with .bat.winfile is a batch file

for use with Windows. In order to run the script in Windows you have to rename the batch file by removing the

".winfile" ending so that it simply end with ".bat".

jMBus contains the following command line applications:

• jmbusApp - can be used to:

• read a specific device over wired M-Bus

• write data to a specific device over wired M-Bus

• scan for connected wired M-Bus devices

• listens for incoming wireless M-Bus messages and prints them to the screen

Executing the script without any parameters will print help information to the screen.

Instead of running the application from the terminal you can create Eclipse project files as explained here:

https://www.openmuc.org/faq/ and run them from within Eclipse.

jMBus User Guide

1

https://github.com/openmuc/jrxtx
https://www.openmuc.org/faq/how-do-i-get-serial-communication-to-work-with-rxtx/
https://www.openmuc.org/faq/

1.3. Distribution

After extracting the distribution tar file the jMBus library can be found in the folder /build/libs-all. The RXTX

dependency can be found in the folder named "dependencies".

2. How M-Bus Works

This chapter gives a short introduction into the M-Bus protocol. Further information can be found in the standard

documents (EN-13757 parts 1-4,IEC-870-5 parts 1-2) and on http://www.m-bus.com .

2.1. Wired M-Bus

Wired M-Bus has a bus topology where a single master can communicate with up to 250 slaves (even more when

secondary addressing is used) over twisted pair cable. The master communicates with a slave using voltage changes

(36/24V) and a slave communicates with the master using current changes(1.0/1.5mA). The current can optionally be

used by devices as a power supply. M-Bus devices are protected against polarity reversal and may use a baud rate

between 300 Baud and 38400 Baud. Most meters use 2400 Baud.

Wired M-Bus differentiates between five different frame types: single character (the byte 0xe5 is used for confirmation

purposes), SND_NKE (send link reset), SND_UD (send user data), REQ_UD1 (request user data 1), REQ_UD2

(request user data 2) and RSP_UD (respond user data). The most common M-Bus message exchange is the

request/response service where the master sends a REQ_UD2 frame addressed to a specific slave (usually a meter) and

the slave answers with RSP_UD message containing all the current measurement values.

The REQ_UD2 frame contains only the primary address (1 byte) of the slave that is to be read. A master cannot

address certain data points it wants to read. Instead the slave always answers with a complete list of its data. A slave

that successfully receives a REQ_UD2 message with a matching address replies with a RSP_UD frame. All other

slaves that receive the request do not answer.

The RSP_UD frame contains the address of the slave sending the frame, a control information (CI) field equal to

0x72, 0x78 or 0x7A and a variable data structure that is explained further down. The CI field may have other values if

an application layer other than the M-Bus application layer is used (e.g. COSEM). The jMBus library only supports

the M-Bus application layer.

2.1.1. Primary Addressing

The primary address is coded as a single byte allowing values between 0 and 255. Addresses 1 to 250 may be assigned

to slaves. The other addresses have special purposes:

• 255 is a broadcast address. A device that receives a message with address 255 never replies to it. Sending

REQ_UD2 frames to the broadcast address makes therefore little sense.

• 254 is also a broadcast address. This time all slaves shall answer requests which may lead to collisions and is only

meant for testing purposes.

jMBus User Guide

2

http://www.m-bus.com

• 251 and 252 are reserved and should not be used for now.

• 0 is used by unconfigured slaves. They can later be assigned to other addresses using secondary addressing.

• 253 indicates that secondary addressing is being used.

2.1.2. Secondary Addressing

Unconfigured slaves usually have a primary address of 0 assigned. In this case the master can still address the slave

using secondary addressing.

Secondary addressing works using two message exchanges. First the master sends a SND_UD frame addressed to

primary address 253. The SND_UD frame contains the secondary address of the target slave. The addressed slave

replies with a confirmation (single character). This mechanism is called selecting a slave. Next the master can read the

slave by sending a regular REQ_UD2 frame again to primary address 253. Only the selected slave will answer the

request.

The secondary address is a world wide unique ID of the M-Bus device. It is 8 bytes long and consists of the following

fields:

• Identification Number (4 bytes) - A number ranging from 00000000 to 99999999 to identify the meter.

• Manufacturer ID (2 bytes) - Three letters that identify the manufacturer.

• Version (1 byte) - Specifies the version of the device. The version is manufacturer specific.

• Device type (1 byte) - This field codes the device type (e.g. electricity meter, cold water meter)

2.2. Wireless M-Bus

Wireless M-Bus communication uses frequencies between 868 MHz and 870 MHz. Different physical layer modes are

available. The two most common modes are S and T.

In S mode a meter sends messages in regular intervals (e.g. every 15 minutes or every 2hours). Messages sent have a

long message header. If the meter is only sending messages and not listening for messages the meter is said to use the

mode S1. If the meter is also listening for messages the mode is called S2. The S2 mode requires significantly more

power. Therefore devices using S2 are usually not battery powered. A gateway that collects data from meters always

uses the S2 mode.

In mode T the meter sends data more frequently (usually every few seconds) with a shorter message header. Again the

meter can only send data (T1) or also listen for data (T2). A meter in T2 mode only listens for incoming messages for

a short time after having sent a message. A gateway in T2 mode will constantly listen for messages instead.

Several wireless M-Bus frame types exist: SND-NKE, SND-NR, ACC-NR and more. The data frames that meters

transmit in regular intervals are called SND-NR (send without request). SND-NR is the most common frame type and

it is the only frame type that jMBus supports.

The SND-NR frame contains the secondary address of the sender. This uniquely identifies the sender. Note that the

jMBus User Guide

3

sender may not necessarily be the meter that the data is originating from. The meters secondary address can be

specified in the variable data structure as explained below. Keys used to encrypt and decrypt M-Bus messages are

associated with a specific secondary address.

Finally the SND-NR frame contains a CI field equal to 0x72, 0x78 or 0x7A and a variable data structure that is

explained further down. Often the variable data structure of wireless M-Bus frames only has a short data header

instead of a long header (as in wired M-Bus) because the secondary address is already transmitted in the data link

layer.

2.3. Variable Data Structure

The variable data structure is the part of an M-Bus frame that contains the measurement data. Its format is defined as

part of the M-Bus application layer in EN 13757-3.

A variable data structure consists of the following components:

1. Data Header (optional) - Depending on the value of the CI field the variable data structure contains a long data

header (CI=0x72), short data header (CI=0x7a), or no data header (CI=0x78). The header contains mainly

information about the metering device. A short header contains the following fields:

• Access number (1 byte) - is a counter of how many times a meter has been read (wired M-Bus) or a meter has

sent data (wireless M-Bus). For detailed information on when the access number is incremented see EN 13757-

3.

• Status (1 byte) - Codes the status of the metering device. For example a device can signal that it is running out

of power or is in an error state.

• Configuration (2 bytes) - the configuration field contains information about the encryption mode and the

number of encrypted bytes. Wired M-Bus usually uses no encryption while wireless M-Bus meters often do.

Only data after the data header may be encrypted.

A long data header contains the secondary address of the meter in addition to all the fields of the short header.

2. Data records - Data records (sometimes called variable data blocks) contain the measured data. Each data record

is made up of a data information block (DIB), a value information block (VIB) and a value. Similar to OBIS

codes DIBs and VIBs code information such as the meaning of a value.

The DIB codes:

• Storage number - a meter can have several storages e.g. to store historical time series data. The storage

number 0 signals an actual value.

• Function - Data can have the following four function types: instantaneous value, max value, min value, value

during error state

• Data value type - The length and coding of the data value field following the DIB and VIB. Possible value

types are 8/16/24/32/48/64 bit integer, 32 bit real, 2/4/6/8/12 digit binary coded decimals (BCD), date and

string. In addition the value type "none" exists to label data records that have no data value field.

jMBus User Guide

4

• Tariff - Indicates the tariff number of this data field. The data of tariff 0 is usually the sum of all other tariffs.

• Subunit - Can be used by a slave to distinguish several subunits of the metering device.

The VIB codes:

• Description - The meaning of the data value (e.g. "Energy", "Volume" etc.)

• Unit - The unit of the data value.

• Multiplier - A factor by which the data value coded in the data field has to be multiplied with

3. Manufacturer specific data (optional) - Manufacturer specific data may optionally be appended at the end of the

frame. This is essentially an array of bytes that is not standardized by the M-Bus standard.

3. Using jMBus

3.1. Wired M-Bus

The library includes an application that reads a given meter and prints the received data to stdout. This application can

also be used as an example on how to use the the library. You can find the source code of ReadMeter.java in

src/main/java/org/openmuc/jmbus/app/.

The first thing to do is to create an M-Bus service access point.

MBusSap mBusSap = new MBusSap("/dev/ttyS0", 2400);

Next the service access point (SAP) needs to be opened. This will attempt to open the associated serial port.

mBusSap.open();

Once the SAP has been successfully opened it can be used to read data from meters by calling the read function. The

following line reads a meter at primary address 1 by sending a REQ_UD2 message and waiting for RSP_UD message

response. The variable data structure of the response is returned by the read function.

VariableDataStructure variableDataStructure = mBusSap.read(1);

Next the variable data structure can be parsed as explained below.

An opened SAP can also be used to write data to a device. The following line writes 0x017a09, by calling SND_UD,

to a meter with primary address 5. This will change the primary address from 5 to 9.

boolean sent = mBusSap.write(5, new byte[]{0x01, 0x7a, 0x09});

jMBus User Guide

5

3.2. Wireless M-Bus

The library includes an application that listens for wireless M-Bus messages. This application can be used as an

example on how to use the library. You can find the source code of WMBusReceiver.java in

src/main/java/org/openmuc/jmbus/app/.

First a SAP needs to be created. Depending on the transceiver used you have to use either WMBusSapAmber or

WMBusSapRadioCrafts. The following line creates an SAP for transceivers by Amber using mode S.

WMBusSap wMBusSap = new WMBusSapAmber("/dev/ttyUSB0", WMBusMode.S, myListener);

You can then set keys that will be automatically used to decode received messages using encryption mode 5 (AES with

CBC and IV).

wMBusSap.setKey(secondaryAddress, key);

Finally open the SAP. This open the serial port and start listening for messages.

wMBusSap.open();

The listener passed to the constructor of the WMBusSap has to implement the newMessage method. This way the Sap

passes new messages to the application.

3.3. Variable Data Structure

Before accessing elements of a variable data structure it has to be decoded using the decode method.

4. Modifying and Compiling jMBus

We use the Gradle build automation tool. The distribution contains a fully functional gradle build file ("build.gradle").

Thus if you changed code and want to rebuild a library you can do it easily with Gradle. Also if you want to import

our software into Eclipse you can easily create Eclipse project files using Gradle. Just follow the instructions on our

FAQ site: https://www.openmuc.org/faq/

5. Authors

Developers:

• Stefan Feuerhahn

• Dirk Zimmermann

Former developers:

jMBus User Guide

6

https://www.openmuc.org/faq/

• Michael Zillgith

jMBus User Guide

7

	jMBus User Guide
	Table of Contents
	1. Intro
	1.1. Dependencies
	1.2. Command Line Applications
	1.3. Distribution

	2. How M-Bus Works
	2.1. Wired M-Bus
	2.1.1. Primary Addressing
	2.1.2. Secondary Addressing

	2.2. Wireless M-Bus
	2.3. Variable Data Structure

	3. Using jMBus
	3.1. Wired M-Bus
	3.2. Wireless M-Bus
	3.3. Variable Data Structure

	4. Modifying and Compiling jMBus
	5. Authors

