
OpenMUC User Guide

Table of Contents
1. Intro . 2

2. Quick Start . 3

2.1. Install OpenMUC . 3

2.2. Start the Demo. 3

2.3. WebUI Walk Through . 4

3. Tutorials . 7

3.1. Build a Simple M-Bus Data Logger . 8

3.2. Develop a Customised Application. 10

3.3. Develop a Customised WebUI Plugin. 13

4. Architecture. 20

4.1. File Structure of the Distribution . 23

4.2. Folder framework/ . 23

4.3. Devices and Channels . 24

4.4. Configuration via channels.xml . 24

4.5. Sampling, Listening and Logging . 28

5. OpenMUC Start Script . 30

5.1. Start OpenMUC . 30

5.2. Stop OpenMUC. 30

5.3. Restart OpenMUC . 30

5.4. Reload OpenMUC Configuration . 30

5.5. Update Bundles . 31

5.6. Remote Shell . 31

5.7. Auto Start at Boot Time . 32

6. Drivers . 32

6.1. Install a Driver . 32

6.2. Modbus . 34

6.3. M-Bus (wired) . 40

6.4. M-Bus (wireless) . 41

6.5. IEC 60870-5-104 . 41

6.6. IEC 61850 . 43

6.7. IEC 62056 part 21 . 43

6.8. KNX . 44

6.9. eHZ . 45

6.10. SNMP . 45

6.11. CSV . 46

6.12. Aggregator . 47

1

1. Intro
OpenMUC is a software framework based on Java and OSGi that simplifies the development of
customized monitoring, logging and control systems. It can be used as a basis to flexibly implement
anything from simple data loggers to complex SCADA systems. The main goal of OpenMUC is to
shield the application developer of monitoring and control applications from the details of the
communication protocol and data logging technologies. Third parties are encouraged to create their

6.13. Math. 49

6.14. REST/JSON . 51

6.15. AMQP. 52

6.16. MQTT . 54

7. Dataloggers . 56

7.1. ASCII Logger. 56

7.2. AMQP Logger . 57

7.3. MQTT Logger . 58

7.4. SlotsDB Logger. 61

7.5. SQL Logger . 61

8. Libraries . 63

8.1. AMQP. 63

8.2. MQTT . 66

8.3. OSGI . 68

8.4. Parser-Service . 72

8.5. SSL . 73

9. WebUI . 74

9.1. Plugins. 74

9.2. Context Root. 74

9.3. HTTPS . 75

9.4. Custom Plugins . 75

9.5. Visualisation . 75

10. REST Server . 76

10.1. Requirements . 76

10.2. Accessing channels. 76

10.3. CORS . 77

11. IEC 61850 Server . 78

11.1. Mapping of OpenMUC channels to server attributes. 78

11.2. Scheduling . 79

12. Modbus Server . 83

12.1. Example . 84

13. Tools . 85

13.1. Apache Felix Web Console . 85

2

own customized systems based on OpenMUC. OpenMUC is licensed under the GPL. If you need an
individual license please contact us.

For a short overview of OpenMUC’s goals and features please visit our overview page. This guide is
a detailed documentation on how OpenMUC works and how to use it.

2. Quick Start
This chapter will give you an idea of how OpenMUC works by showing you how to run and adjust
the demo framework which is part of the OpenMUC distribution.

2.1. Install OpenMUC
To install OpenMUC just download the latest version and unpack it to your favorite destination.

OpenMUC requires Java 8 or higher, therefore make sure it is installed on your machine.

2.2. Start the Demo
The OpenMUC demo contains a simple application which demonstrates how you can access
channels and their records from an application. The application reads data from channels of the
CSV driver, calculates new values from them and writes them to other channels. The application
can be used as starting point to create your own OpenMUC application.

Open a terminal and navigate to the framework folder (<your-path>/openmuc/framework)

To start OpenMUC on Linux run:

./bin/openmuc start -fg

To start OpenMUC on Windows run:

bin\openmuc.bat

This will start the Apache Felix OSGi framework which in turn starts all the bundles located in the
"bundle" folder. After initialization of the OSGi framework you should be able to see the output of
the demo application.

...
17:33:00.011 INFO SimpleDemoApp - home1: current grid power = -4.672 kW
17:33:05.006 INFO SimpleDemoApp - home1: current grid power = -4.666 kW
17:33:10.007 INFO SimpleDemoApp - home1: current grid power = -4.671 kW
...

Among the bundles that are started is the Apache Gogo shell. This shell is entered once you run

3

https://www.openmuc.org/contact/
https://www.openmuc.org/openmuc/
https://www.openmuc.org/openmuc/download/

OpenMUC. Now type lb to list all installed bundles.

START LEVEL 1
 ID|State |Level|Name
 0|Active | 0|System Bundle
 ...
 7|Active | 1|Logback Core Module
 8|Active | 1|OpenMUC App - Simple Demo
 9|Active | 1|OpenMUC Core - API
 10|Active | 1|OpenMUC Core - Data Manager
 11|Active | 1|OpenMUC Core - SPI
 12|Active | 1|OpenMUC Data Logger - ASCII
 13|Active | 1|OpenMUC Data Logger - SlotsDB
 14|Active | 1|OpenMUC Driver - CSV
 15|Active | 1|OpenMUC Server - RESTful Web Service
 16|Active | 1|OpenMUC WebUI - Base
 17|Active | 1|OpenMUC WebUI - Channel Access Tool
 ...

You can stop and exit the OSGi framework any time by typing ctrl+d or stop 0. For more
information about the start script see chapter OpenMUC Start Script.

2.3. WebUI Walk Through
This section leads you through the framework’s WebUI.

Open a browser (works currently best with Google Chrome) and enter the URL
"http://localhost:8888". This leads you to the login page. The default user is admin and the default
password is admin as well.

After successful login the OpenMUC Dashboard opens, which provides various plugins for
configuration and visualization. A full description of the plugins can be found in the chapter Web
UI.

Figure 1. WebUI Dashboard

Let us first look at the Channel Access Tool which provides the current value of each channel and

4

./images/webui-dashboard.png

also enables you to write values. Click on Channel Access Tool to open this plugin. The next page
lists all available devices which are currently configured in OpenMUC. Select the home1 and
proceed with Access selected.

Figure 2. WebUI device selection

On the next page you will see the latest records of all channels of home1. Each record consists of a
data value, a timestamp when it was sampled and a quality flag.

Figure 3. WebUI channel access tool

Let’s have look at the Data Plotter. To get to the Data Plotter click on Applications next to the
OpenMUC logo and select Data Plotter.

5

./images/webui-channelaccesstool-device-selection.png
./images/webui-channelaccesstool-channels.png

Figure 4. WebUI data plotter

Select the Live Data Plotter. To view the live data select the channels of your choice and click Plot
Data.

Figure 5. WebUI live plotter

The last WebUI plugin we want to look at is a customised visualisation for our demo application.
Click on Applications and select Simple Demo Visualisation. The purpose of this plugin is to show
how OpenMUC channels can be accessed and used for individual visualisations. Detailed
informations about the development of such a plugin can be found in the Tutorial Develop a
Customised WebUI Plugin.

6

./images/webui-dataplotter.png
./images/webui-dataplotter-live.png

Figure 6. WebUI customized visualization

2.3.1. Add a New Channel

All channels currently defined get their data using the CSV driver from the file "csv-
driver/home1.csv". That file contains additional data. So let us now add a new channel to the
OpenMUC configuration using the channel scan feature.

In the WebUI go to the Channel Configurator. Click the tab "Devices". In the row of device "home1"
click on the search/scan icon. It shows you all the channels available in that device. Once the scan
has completed a list of available channels is shown. In this tutorial we select the channel with
address "pv_energy_production". Click "add channels".

Now the channel overview opens where we can find our selected channel. In the last step of the
configuration we click on the edit icon of the channel and set the parameters logging interval and
sampling interval to 5000 ms and change the unit to kWh.

You can now check that the new channel was added to the "conf/channels.xml" file.

After submitting the channel configuration we go back to the dashboard and open the Channel
Access Tool. Here we select our home1 device and continue with access selected. Now we able to see
the current values of the pv_energy_production channel.

The logged data can be found in openmuc/framework/data/ascii/<currentdate>_5000.dat

3. Tutorials

7

./images/simpleDemoVisualisation.png

3.1. Build a Simple M-Bus Data Logger
Objective: You will learn how to create a simple data logger which reads out a M-Bus meter via
serial communication. It uses OpenMUC on-board tools so no programming is required.

Preparation: If not already done, your system needs to be prepared once for serial communication.

sudo apt-get install librxtx-java
sudo adduser $USER dialout

Now logout from your system and login again to apply system changes.

Step-by-step

1. Download OpenMUC and unpack it

2. Open openmuc/framework/conf/bundles.conf.gradle and comment the following lines by //

osgibundles group: "org.openmuc.framework", name: "openmuc-app-simpledemo",
version: openmucVersion
osgibundles group: "org.openmuc.framework", name: "openmuc-driver-csv", version:
openmucVersion

3. Add following lines to make the M-Bus driver and serial communication available

osgibundles group: "org.openmuc.framework", name: "openmuc-driver-mbus", version:
openmucVersion
osgibundles group: "org.openmuc", name: "jrxtx", version: "1.0.1"

4. To apply changes navigate to openmuc/framework/bin and run

./openmuc update-bundles

5. Start OpenMUC

./openmuc start -fg

6. Open a browser and point it to localhost:8888 to view the WebUI of OpenMUC. Login with user
admin and password admin.

7. Click on Channel Configurator > Tab Drivers > Add new driver to configuration

8. Enter mbus as ID and click Submit

9. Now the M-Bus driver appears under Channel Configurator > Tab Drivers. Click on the search
icon

8

Figure 7. WebUI data plotter

10. Enter the serial port the meter is connected to and provide the baud rate if needed (e.g.
/dev/ttyS0 or /dev/ttyS0:2400). See M-Bus driver section for more information. If you are using
an USB device you can use the dmesg tool on linux to figure out on what port it is connected (e.g.
/dev/ttyUSB0).

11. Click on Scan for devices. Now OpenMUC scans all M-Bus addresses, which may take a while

12. Select the desired device from the list and click Add devices

Figure 8. WebUI M-Bus device scan

13. Now the device is added. If you do not see the search icon next to the device, press F5 to reload
the page and navigate to Channel Configurator > Tab Devices

14. Click on the search icon and OpenMUC automatically scans all available channels. Select the
desired channels and click Add channels

9

./images/tutorial_mbus_logger_channel_configurator.png
./images/tutorial_mbus_logger_driver_scan.png

Figure 9. WebUI M-Bus channel scan

15. Now we need to define a sampling and logging interval for the channels. Click on Channel
Configurator > Tab Channels and click on Edit Icon of the desired channel. Write 2000 in the
Sampling Interval and Logging Interval field and click Submit

16. To show actual values of the channel, navigate to Applications > Channel Access Tool, select your
device and click Access selected

Figure 10. WebUI channel access tool

Tips

• All logged data are stored in /openmuc/framework/data/ascii/

• You can also change the configuration by editing /openmuc/framework/conf/channels.xml

3.2. Develop a Customised Application
Objective: You will learn how to develop your own OpenMUC application. This tutorial focuses on
the Eclipse integration, build process and how to start your application in the felix OSGi

10

./images/tutorial_mbus_logger_channel_scan.png
./images/tutorial_mbus_logger_channel_access_tool.png

framework.

Preparation: This tutorial is based on Eclipse IDE and Gradle build tool, therefore you need Eclipse
IDE and Gradle installed on your pc.

Step-by-step

1. Download and unpack the OpenMUC framework. Open a terminal and navigate to the openmuc
folder

2. Create a new project based on the simple demo application. Navigate to openmuc/projects/app
and copy the simpledemo folder and rename the copy to ems (Energy Management System).

3. Edit the build.gradle file inside your ems folder. Rename the project name and description and
save the file.

def projectName = "EMS"
...
description "OpenMUC Energy Management System."

4. Navigate to app/ems/src/main/java/org/openmuc/framework/app/ and rename the folder
simpledemo to ems

5. Replace the SimpleDemoApp.java inside this ems folder with EmsApp.java.

package org.openmuc.framework.app.ems;

import org.openmuc.framework.data.Record;
import org.openmuc.framework.dataaccess.Channel;
import org.openmuc.framework.dataaccess.DataAccessService;
import org.openmuc.framework.dataaccess.RecordListener;
import org.osgi.service.component.annotations.Activate;
import org.osgi.service.component.annotations.Component;
import org.osgi.service.component.annotations.Deactivate;
import org.osgi.service.component.annotations.Reference;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

@Component(service = {})
public final class EmsApp{

 private static final Logger logger = LoggerFactory.getLogger(EmsApp.class);
 private static final String APP_NAME = "OpenMUC EMS App";

 private Channel chPowerGrid;
 private RecordListener powerListener;

 @Reference
 private DataAccessService dataAccessService;

 @Activate

11

 private void activate() {
 logger.info("Activating {}", APP_NAME);
 powerListener = new PowerListener();
 chPowerGrid = dataAccessService.getChannel("power_grid");
 chPowerGrid.addListener(powerListener);
 }

 @Deactivate
 private void deactivate() {
 logger.info("Deactivating {}", APP_NAME);
 chPowerGrid.removeListener(powerListener);
 }
}

class PowerListener implements RecordListener{

 private static final Logger logger =
LoggerFactory.getLogger(PowerListener.class);

 @Override
 public void newRecord(Record record) {
 if (record.getValue() != null) {
 logger.info(">>> grid power: {}", record.getValue().asDouble());
 }
 }
}

This is a light version of the simple demo application and basically adds a listener to the
power_grid channel and logs the current value. This class can be used for further development
of your application.

6. Now we add our project to the gradle build process. For this purpose open the
openmuc/settings.gradle in an editor and append following statement to the include statement

, "openmuc-app-ems"

7. Furthermore you need to add following line at the end of settings.gradle

project(":openmuc-app-ems").projectDir = file("projects/app/ems")

8. Now we create the Eclipse project files by running the following command in the openmuc
main directory

gradle eclipse

9. Start your Eclipse IDE and set the GRADLE_USER_HOME classpath variable: Go to
Window>Preferences>Java>Build Path>Classpath Variable. Set the variable

12

GRADLE_USER_HOME to the path of the ~/.gradle folder in your home directory (e.g.
/home/<user_name>/.gradle/

10. Import the Openmuc projects into Eclipse: Go to File>Import>General>Existing Projects into
Workspace, select your OpenMUC directory and click on Finish. All projects should be imported
without any errors.

11. Now add the EMS application to the OpenMUC Framework. Navigate openmuc/framework/conf
and and following line to bundles.conf.gradle below the openmuc-app-simpledemo entry:

osgibundles group: "org.openmuc.framework", name: "openmuc-app-ems",
version: openmucVersion

12. Finally we build the framework and start our application. Navigate to openmuc/framework/bin
and run:

./openmuc update-bundles -b

This will build all bundles and copies them to /openmuc/framework/bundles. Our EMS app
should be now inside this folder e.g. openmuc-app-ems-<version>.jar

13. Start the framework with:

./openmuc start -fg

14. The log messages of our EMS application are now visible in the terminal e.g:

2018-12-17 19:10:20.015 [...] INFO o.o.framework.app.simpledemo.EmsApp - >>> grid
power: -1.779
2018-12-17 19:10:25.006 [...] INFO o.o.framework.app.simpledemo.EmsApp - >>> grid
power: -1.761

15. Now you know all the steps to build a new application and get it running in OpenMUC. For
further development you should have a look at the source code of the SimpleDemoApp.java.

3.3. Develop a Customised WebUI Plugin
Objective: In this tutorial you will learn how to add a plugin to the WebUI as well as how to display
data from your configured channels. Examples for such plugins are the simpledemovisualisation
bundle or the HeiPhoss WebUI

This tutorial describes how we developed the simpledemovisualisation. When
creating your own plugin you can just replace the name
simpledemovisualisation whenever it comes up in the tutorial.

Preparation: You should be familiar with OpenMUC’s architecture.

13

https://www.openmuc.org/projects/heiphoss/

Step-by-step

1. First we have to create a new Project with the Structure

openmuc/projects/webui/simpledemovisualisation

2. Now copy the build.gradle file from one of the existing WebUI plugins, for example:

openmuc/projects/webui/channelaccesstool/build.gradle

into this project and change the projectName and projectDescription

def projectName = "OpenMUC WebUI - Simple Demo Visualisation"
def projectDescription = "Simple Demo Visualisation plug-in for the WebUI of the
OpenMUC framework."

3. Open openmuc/configuration.gradle and add the following line under distributionProjects =
javaProjects.findAll

it.getPath() == ":openmuc-webui-simpledemovisualisation" ||

4. Open openmuc/settings.gradle and add the following line under OpenMUC WebUI Bundles of
the include section

'openmuc-webui-simpledemovisualisation',

5. Furthermore, add the following line to the projects section of the settings.gradle

project(":openmuc-webui-simpledemovisualisation").projectDir =
file('projects/webui/simpledemovisualisation')

6. Open openmuc/framework/conf/bundles.conf.gradle and add the following line under
dependencies

osgibundles group: "org.openmuc.framework", name: "openmuc-webui-
simpledemovisualisation", version: openmucVersion

Next we will take a look at how our project should be structured once we are done

14

7. First we will take a look at the java file. Recreate the folder structure above and create the java
file SimpleDemoVisualisation.java, and then copy this into it

import org.openmuc.framework.webui.spi.WebUiPluginService;
import org.osgi.service.component.annotations.Component;

@Component(service = WebUiPluginService.class)
public final class SimpleDemoVisualisation extends WebUiPluginService {

 @Override
 public String getAlias() {
 return "simpledemovisualisation";
 }

 @Override
 public String getName() {
 return "Simple Demo Visualisation";
 }

}

The two functions getAlias and getName have to be overridden. The alias is used to identify the
plugin while the name will be displayed in the WebUI. In order to display an icon above the
plugin’s name, the file needs to be called icon and put in the images folder.

8. Next we will take a look at app.js and app.routes.js. In app.js all we do is creating a module and
naming it.

(function(){
 angular.module('openmuc.openmuc-visu', []);
})();

15

./images/simpleDemoVisualisationTree.png

The more interesting one is app.routes.js because it is responsible for allowing us to get from
the main page to the page of our plugin. It also allows us to specify which files have to be
loaded.

(function(){

 var app = angular.module('openmuc');

 app.config(['$stateProvider', '$urlRouterProvider',
 function($stateProvider, $urlRouterProvider) {
 $stateProvider.
 state('simpledemovisualisation', {
 url: '/simpledemovisualisation',
 templateUrl: 'simpledemovisualisation/html/index.html',
 requireLogin: true
 }).
 state('simpledemovisualisation.index', {
 url: '/',
 templateUrl: 'simpledemovisualisation/html/graphic.html',
 controller: 'VisualisationController',
 requireLogin: true,
 resolve: {
 openmuc: function ($ocLazyLoad) {
 return $ocLazyLoad.load(
 {
 name: 'openmuc.simpledemovisualisation',
 files: ['openmuc/js/channels/channelsService.js',
 'openmuc/js/channels/channelDataService.js',

'simpledemovisualisation/css/simpledemovisualisation/main.css',

'simpledemovisualisation/js/visu/VisualisationController.js']
 }
)
 }
 }
 })
 }]);

})();

All files you need have to be added to the list "files" in order for the plugin to work. The first two
files we load are necessary to access the defined channels. Then we load in our css file and lastly
the javascript file of this plugin.

9. For the Plugin created in this tutorial we will need an svg that is put into the image folder. The
SimpleDemoGraphic.svg used in this tutorial is made up of multiple images, paths as well as text
fields. In this case only the text fields are of interest.

10. The two html files used in this app are very simple, index.html sets the headline and then calls

16

on graphic.html through ui-view. Ui-view calls upon the route defined in app.routes.js.

<div class="page-header">
 <h1>OpenMUC Visualisation</h1>
</div>
<div ui-view></div>

In graphic.html we create a div element and assign it the class svg-container. We then create an
object HTML element inside the div and assign it the class svg-content.

<div class="svg-container">
 <object id="simpleDemoGraphic" type="image/svg+xml" data=
"simpledemovisualisation/images/SimpleDemoGraphic.svg"
 class="svg-content" onload="display_visualisation()"></object>
</div>

Further we also assign it an Id, in this case simpleDemoGraphic, specify that it is of the type svg
and tell it where our svg is located. This way our svg is now displayed on the page, but in order
to change elements of the svg we need a javascript function which is called through onload.

11. In order to specify how our page should be displayed we use a css file.

html, body {
 font-family: "Arial";
 margin: 0px;
 padding: 0px;
}

.svg-container {
 display: inline-block;
 position: relative;
 width: 1108px;
 height: 760px;
 border:1px solid black;
}

.svg-content {
 display: block;
 position: absolute;
 width: 1106px;
 height: 740px;
 top: 0;
 left: 0;
}

In this css file we tell the browser how the html elements should look and be positioned. If the
declaration starts with a dot it signifies all elements with the specified class being targeted, a

17

hash would signify an element with that Id being targeted and nothing signifies all html
elements of that type should be targeted.

12. By default the svg will have an eight pixel margin on each side, meaning there will be white
space between the border and svg. If you dont want that you need to open the svg in a text
editor and add a style tag after the svg tag as shown below

<svg
 xmlns:osb="http://www.openswatchbook.org/uri/2009/osb"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:cc="http://creativecommons.org/ns#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:svg="http://www.w3.org/2000/svg"
 xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
 xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
 width="100%"
 height="100%"
 viewBox="0 0 573.61664 357.1875"
 version="1.1"
 id="svg8"
 inkscape:version="0.92.3 (2405546, 2018-03-11)"
 sodipodi:docname="SimpleDemoGraphic.svg">
 <style
 type="text/css"
 media="screen"
 id="style5004"><![CDATA[
 body{
 margin: 0px;
 }
]]></style>

We cannot change the css of the svg from our css file so we have to do it inside the svg.

13. Finally we take a look at the javascript file that will allow us to display data in real time.

(function(){

 var injectParams = ['$scope', '$interval', 'ChannelsService'];

 var VisualisationController = function($scope, $interval, ChannelsService) {
 var svg_document;

 display_visualisation = function() {

Here we "import" the angular functions $scope and $interval as well as the class
ChannelsService. Next we take a look at the function display_visualisation that is called when

18

the html page loads.

svg_document = document.getElementById('simpleDemoGraphic').contentDocument;

Through this line of code we now have access to the svg in javascript. We achieve this by calling
document.getElementById with the id of our object element as a parameter. The
contentDocument means that the return value is the document object, otherwise the return
would have just been the content of the document, in which case we could not use it in the way
we need to later.

 $scope.interval = "";
 $interval.cancel($scope.interval);
 $scope.interval = $interval(function(){
 ...
 }, 500);
};

What follows is defined inside this interval, meaning it will be repeated every 500 milliseconds.

ChannelsService.getAllChannels().then(async function(channels) {
 $scope.channels = await channels.records;
});

Here we call the function getAllChannels of the class ChannelsService. It makes a get call to the
REST server and returns all the channels defined in the channels.xml. The "then" means that
whatever is in the round brackets will be executed after getAllChannels' return value arrives.
Inside these round brackets we define an async function with getAllChannels' return value as a
parameter. The list records of the return value contains the requested channels, so we save
them in the list $scope.channels. Normally the rest of the code would be executed while
getAllChannels waits for a reply, in which case our code would fail as $scope.channels would be
undefined, but the await keyword in conjunction with marking the function as async makes it
so the code only resumes executing once the await has been resolved.

if ($scope.channels != undefined){
 $scope.channels.forEach(function(channel){
 if (channel.id === "power_heatpump"){
 textHeatPump = svg_document.getElementById("textHeatPump");
 textHeatPump.textContent = channel.record.value + " kW";
 }
 if (channel.id === "power_electric_vehicle"){
 textChargingStation = svg_document.getElementById("textChargingStation
");
 textChargingStation.textContent = channel.record.value + " kW";
 }
 if (channel.id === "power_photovoltaics"){
 textPv = svg_document.getElementById("textPv");

19

 textPv.textContent = channel.record.value + " kW";
 }
 if (channel.id === "power_grid"){
 textGrid = svg_document.getElementById("textGrid");
 textGrid.textContent = channel.record.value + " kW";
 }
 });
}

First we check if our list is not undefined as it is possible that during the first interval there
wont be any data to work with. Now we iterate through our channels list to find the channels
we need. Once we found the right channel, we search for the corresponding text field and save
the reference to it in a variable. By setting the textContent of the text field we can change what
is displayed, in this case the channel’s value is displayed in the text field. Now we set the
interval and close the function definition as shown above.

 $scope.$on('$destroy', function () {
 $interval.cancel($scope.interval);
 });

 };

 VisualisationController.$inject = injectParams;

 angular.module('openmuc.openmuc-visu').controller('VisualisationController',
VisualisationController);

})();

After that we tell the function to stop the interval if the scope’s destroy event is triggered and
that the in app.js defined module should use this controller.

Tips

• If you want to change the css of the svg at runtime you can do so through javascript similarly to
the manipulation of the text field above.

textHeatPump.style.fill = "blue";

This would set the text color of the text field to blue

4. Architecture
The following image depicts the software layers of an OpenMUC system.

20

Figure 11. OpenMUC software layers

The OpenMUC framework runs within an OSGi environment which in turn is being run by a Java
Virtual Machine. The underlying operating system and hardware can be chosen freely as long as it
can run a Java 8 VM.

OpenMUC consists essentially of various software modules which are implemented as OSGi bundles
that run in the OSGi environment and communicate over OSGi services. The following figure
illustrates the main modules that make up OpenMUC.

Figure 12. OpenMUC modules

All modules except for the data manager are optional. Thus by selecting the modules you need you
can easily create your own customized and lightweight system.

The different modules in the picture are now further explained:

1. The data manager represents the core and center of OpenMUC. Virtually all other OpenMUC
modules (e.g. drivers, data loggers, servers, applications and web interface plugins)
communicate with it through OSGi services. The data manager gets automatically notified when
new drivers or data loggers get installed. OpenMUC applications communicate with devices,
access logged data or change the configuration by calling service functions provided by the data
manager. It is therefore the data manager that shields the application programmer from the
details of the communication and data logging technology. What the data manager does is

21

./images/openmuc-software-layers.png
./images/openmuc-bundles-with-numbers.png

mostly controlled through a central configuration.

2. The channel configuration holds the user defined data channels and its parameters. Data
channels are the frameworks representation of data points in connected devices. Amongst
others the channel configuration holds the following information:

a. communication parameters that the drivers require

b. when to sample new data from connected devices

c. when to send sampled data to existing data logger(s) for efficient persistent storage. The
configuration is stored in the file conf/channels.xml. You may add or modify the configured
channels by manually editing the channels.xml file or through the channel configurator web
interface.

3. A driver is used by the data manager to send/get data to/from a connected device. Thus a driver
usually implements a communication protocol. Several communication drivers have already
been developed (e.g. IEC 61850, ModbusTCP, KNX). Many drivers use standalone communication
libraries (e.g. OpenIEC 61850, jMBus) developed by the OpenMUC team. These libraries do not
depend on the OpenMUC framework and can therefore be used by any Java application. New
communication drivers for OpenMUC can be easily developed by third parties.

4. A data logger saves sampled data persistently. The data manager forwards sampled data to all
available data loggers if configured to do so. Data loggers are specifically designed to store time
series data for short storage and retrieval times. OpenMUC currently includes four data loggers.
The ASCII data logger saves data in a human readable text format while SlotsDB saves data in a
more efficient binary format. And two loggers for remote system logging with AMQP or MQTT.

5. If all you want is sample and log data then you can use the OpenMUC framework as it is and
simply configure it to your needs. But if you want to process sampled data or control a device
you will want to write your own application. Like all other modules your application will be an
OSGi bundle. In your application you can use the DataAccessService and the ConfigService
provided by the data manager to access sampled and logged data. You may also issue immediate
read or write commands. These are forwarded by the data manager to the driver. The
configuration (when to sample and to log) can also be changed during run-time by the
application. At all times the application only communicates with the data manager and is
therefore not confronted with the complicated details of the communication technology being
used.

6. If your application is located on a remote system (e.g. a smart phone or an Internet server) then
the data and configuration can be accessed through an OpenMUC server. At the moment
OpenMUC provides a RESTful web service for this purpose.

7. The OpenMUC framework provides a web user interface (WebUI) for tasks such as
configuration, visualization of sampled data or exporting logged data. The web interface is
modular and provides a plug-in interface. This way developers may write a website that
integrates into the main menu of the web interface. The WebUI is mostly for configuration and
testing purposes. Most companies will want to create their own individual UI.

8. OpenMUC also contains a set of core libraries which provide helper classes that are used by
multiple bundles of the framework.

22

4.1. File Structure of the Distribution
The distribution contains the following important files and folders:

build/libs-all

All modules/bundles that make up the OpenMUC framework

dependencies

Information on the external dependencies of the OpenMUC framework. Also contains the RXTX
library (repacked as a bundle) which is needed by many OpenMUC drivers based on serial
communication.

projects

All sources of the OpenMUC framework. You can easily change and rebuild OpenMUC using
Gradle.

framework

A ready to use OpenMUC demo framework that is introduced next.

4.2. Folder framework/
The folder "framework" contains a configured OpenMUC framework that can be used as a basis to
create your own customized OpenMUC framework for your task. The framework folder contains
the following important files and folders:

felix

The main Apache Felix OSGi jar which is run to start OpenMUC.

bin

Run scripts for Linux/Unix and Windows.

bundle

Contains all bundles that are started by the Felix OSGi framework. Note that this folder does not
contain all available OpenMUC bundles but only a subset for demonstration purposes.

log

Log files produced by the running framework.

conf

Various configuration files of the framework.

4.2.1. Folder conf/

bundles.conf.gradle

Contains a list of all bundles which should be used for the framework.

23

channels.xml

Configuration file of OpenMUC to configure drivers, devices and channels.

config.properties

Property file of the Felix OSGi framework.

logback.xml

Configuration file to configure log levels for console and log file.

Currently, the logging is configured to create logfiles of at most 100MB, create a
new log file every day and keep a maximum of 30 days or 3GB, which ever is reached
first.

system.properties

Contains general settings for the OpenMUC framework

4.3. Devices and Channels
OpenMUC works on the basis of channels. A channel basically represents a single data point. Some
examples for a channel are the metered active power of a smart meter, the temperature of a
temperature sensor, any value of digital or analog I/O module or the some manufacture data of the
device. Thus a channel can represent any kind of data point. The following picture illustrates the
channel concept.

OpenMUCs Channel Concept

4.4. Configuration via channels.xml
The conf/channels.xml file is the main configuration file for OpenMUC. It tells the OpenMUC
framework which channels it should log and sample. It contains a hierarchical structure of drivers,
devices and channels. A driver can have one or more devices and devices can have one or more

24

images/openmuc_concept.png

channels. Following listing shows a sample configuration to illustrate the hierarchical structure.
The driver, device and channel options are explained afterwards.

Listing 1. channels.xml structure

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<configuration>
 <logger>loggerId</logger>

 <driver id="driver_x">
 <!-- driver options -->
 <device>
 <!-- device options -->
 <channel>
 <!-- channel options -->
 </channel>
 <channel>
 <!-- channel options -->
 </channel>
 </device>
 </driver>
</configuration>

Table 1. Driver options

Options Mandato
ry

Values Default Description

id yes string - Id of the driver

samplingTimeout no time* 0 Default time waited for a read operation to
complete if the device doesn’t set a
samplingTimeout on its own.

connectRetryInterva
l

no time* 60s Default time waited until a failed
connection attempt is repeated.

disabled no boolean false While disabled, no connections to devices
on this driver are established at all and all
channels of these devices stop being
sampled and logged.

Table 2. Device options

Options Mandato
ry

Values Default Description

id no string - ID of the device.

deviceAddress yes string - Address for the driver to uniquely identify
the device. Syntax of this address is up to
the driver implementation.

description no string - Description of the device.

25

Options Mandato
ry

Values Default Description

settings no string - Additional settings for the driver. Syntax is
up to the driver implementation.

samplingTimeout no time* 0 Time waited for a read operation to
complete. Overwrites samplingTimeout of
Driver.

connectRetryInterva
l

no time* 60s Time waited until a failed connection
attempt is repeated.

disabled no boolean false While disabled, no connection of this
device is established and all channels of
this device stop being sampled and logged.

Table 3. Channel options

Options Mandato
ry

Values Default Description

id yes string - Globally unique identifier. Used by data
logger implementations. The OpenMUC
framework automatically generates an id if
none is provided.

description no string - Description of the channel.

channelAddress yes string - The channelAddress is driver specific and
contains the necessary parameters for the
driver to access.

settings no string - Additional settings for the driver. Syntax is
up to the driver implementation.

valueType no DOUBLE
FLOAT
LONG
INTEGER
SHORT
BYTE
BOOLEA
N
BYTE_AR
RAY
STRING

DOUBLE Data type of the channel. Used on data
logger. Driver implementation do NOT
receive this settings!

valueType Attribute:
length

no integer 10 The attribute length is only used if
valueType is BYTE_ARRAY or STRING.
Determines the maximum length of the
byte array or string.

26

Options Mandato
ry

Values Default Description

scalingFactor no double 1 Is used to scale a value read by a driver or
set by an application. The value read by an
driver is multiplied with the scalingFactor
and a value set by an application is divided
by the scalingFactor. Possible values are
e.g.: 1.0 4.94147E-9 -2.4

valueOffset no double 0 Is used to offset a value read by a driver or
set by an application. The offset is added to
a value read by a driver and subtracted
from a value set by an application.

unit no string - Physical unit of this channel. For
information only (info can be accessed by
an app or driver)

loggingInterval no time* - Time difference until this channel is logged
again. Omitting loggingInterval disables
logging in intervals. Setting loggingInterval
disables loggingEvent.

loggingTimeOffset no time* 0

loggingEvent no boolean false If true, immediately logs latest record on
value change. Only supported by some
data loggers. Disabled if loggingInterval is
set. See data logger description for more
information.

loggingSettings no string - Data logger specific log settings. Format:
<loggerId_A>[:<param_A>=<value_A>][,…
][;<loggerId_B>[:<param_B>=<value_B>]].
See data logger description for more
information.

loggingSettings
Attribute: reader

no string - In case multiple readers are registered in
the framework you can use the attribute
reader to specify a dedicated logger for
reading values e.g. <loggingSettings
reader="asciilogger">mqttlogger:topic=my/
topic</loggingSettings

listening no boolean false Determines if this channel shall passively
listen for incoming value changes from the
driver.

samplingInterval no time* - Time interval between two attempts to
read this channel. -1 or omitting
samlingOffset disables sampling on this
channel.

27

Options Mandato
ry

Values Default Description

samplingTimeOffset no time* 0

samplingGroup no string - For grouping channels. All channels with
the same samplingGroup and same
samplingInterval are in one group. The
purpous of samplingGroups is to improve
the drivers performance - if possible.

disabled no boolean false If a channel is disabled, all sampling and
logging actions of this channel are stopped.

*time: integer with suffix (ms, s, m, h) like: 300ms, 2s.

 if you don’t use a suffix, then ms is automatically used

The available driver settings, device settings and channel settings can also be found in the Javadoc
of DriverConfig.java, DeviceConfig.java and ChannelConfig.java respectively.

Default Data Logger

You can define a default data logger by adding a logger element with the id of a data logger to the
configuration. If available, that data logger is used to read logged values. The ids of data loggers
shipped with the OpenMUC Framework are defined in the "Data Loggers" chapter. If no logger with
the defined id is available, or the logger element is missing from the configuration, an arbitrary
available logger is used to read logged values. Only one default logger may be defined. If multiple
logger elements exists, only the first one is evaluated.

This configuration only affects reading of already logged values. Channels are still logged by all
available loggers.

4.5. Sampling, Listening and Logging
• sampling is when the data manager frequently asks a driver to retrieve a channel value.

• listening is when the driver listens on a channel and forwards new values to the data manager.

• logging is when the data manager forwards the current sampled value to the data loggers that
are installed. The data loggers then store the data persistently

The following examples will give you a better understanding of these three settings.

Listing 2. Example 1: Just Sampling

<channel>
 <id>channel1</id>
 <channelAddress>dummy/channel/address/1</channelAddress>
 <samplingInterval>4s</samplingInterval>
</channel>

28

https://www.openmuc.org/openmuc/javadoc/

In example 1 the channel is sampled every 4 seconds which means the data manager requests
every 4 seconds the current value from the driver.

Listing 3. Example 2: Sampling and Logging

<channel>
 <id>channel2</id>
 <channelAddress>dummy/channel/address/2</channelAddress>
 <samplingInterval>4s</samplingInterval>
 <loggingInterval>8s</loggingInterval>
</channel>

Example 2 extends example 1 by an additional logging. The logging interval is set to 8 seconds
which means that every 8 seconds the last sampled value is stored in the database. In this case
every second sampled value is stored because the sampling interval is 4 seconds. To log every
sampled value the sampling interval and logging interval need to be the same.

Listing 4. Example 3: Just Listening

<channel>
 <id>channel3</id>
 <channelAddress>dummy/channel/address/3</channelAddress>
 <listening>true</listening>
</channel>

In example 3 listening instead of sampling is used. This means that the driver reports a new
channel value to the data manager when the value has changed for example.

Listing 5. Example 4: Listening and Logging

 <channel>
 <id>channel4</id>
 <channelAddress>dummy/channel/address/4</channelAddress>
 <listening>true</listening>
 <loggingInterval>8s</loggingInterval>
</channel>

Example 4 extends example 3 by an additional logging.

When listening is true and additional a sampling interval is defined then the
sampling is ignored.

Listing 6. Example 5: Listening and Event-Logging

 <channel>
 <id>channel4</id>
 <channelAddress>dummy/channel/address/5</channelAddress>
 <listening>true</listening>
 <loggingEvent>true</loggingEvent>

29

</channel>

Example 5 extends example 3 by an additional event logging. It loggs only if only a new value was
received. (the logger needs to support event logging)

5. OpenMUC Start Script
The script to start OpenMUC is located in /framework/bin/.

5.1. Start OpenMUC
To start OpenMUC on Linux run:

./bin/openmuc start -fg

This runs OpenMUC in the foreground on your console. If you like to start OpenMUC as background
process then skip the parameter -fg. On Windows you can run the bin\openmuc.bat to start
OpenMUC. For now we will focus on the Linux script, since Linux is the more common
environment for OpenMUC. The start command will basically run the Felix OSGi Framework via
java -jar felix/felix.jar and Felix starts all bundles located in framework/bundle.

5.2. Stop OpenMUC
To stop OpenMUC run:

./bin/openmuc stop

If you started OpenMUC in the foreground you can press ctrl+d or enter "stop 0" to stop OpenMUC.

5.3. Restart OpenMUC
With the restart command OpenMUC stops and starts again.

./bin/openmuc restart

5.4. Reload OpenMUC Configuration
To reload the configuration without restarting OpenMUC use:

./bin/openmuc reload

30

5.5. Update Bundles
If you have modified the bundles.conf.gradle file then run the following command to update the
/framework/bundle folder.

./bin/openmuc update-bundles

If you have changed the source code and want to rebuild the bundles and apply them to the
/framework/bundle folder use:

./bin/openmuc update-bundles -b

If you are using a local maven repository you can use the -i option to update the repository with
the latest changes.

./bin/openmuc update-bundles -i

Tip: development the following command is quite handy to start OpenMUC with your latest code
changes:

./bin/openmuc update-bundles -b && ./bin/openmuc start -fg

5.6. Remote Shell
The remote shell allows you to connect via telnet to a running OpenMUC which was started as
background process.

OpenMUC uses the Apache Felix Gogo JLine Shell by default, since JLine provides more advanced
features than the standard GoGo Shell. Unfortunately, JLine does not work in combination with the
remote shell. Therefore, we must switch back to the standard GoGo Shell to use remote access. This
can be achieved by modifying the bundles.conf.gradle. Add the following bundles
org.apache.felix.shell.remote and org.apache.felix.gogo.shell and comment or remove the
bundles org.apache.felix.gogo.jline and jline

osgibundles group: "org.apache.felix", name: "org.apache.felix.shell.remote",
version: "<version>"
osgibundles group: "org.apache.felix", name: "org.apache.felix.gogo.shell",
version: "<version>"

//osgibundles group: "org.apache.felix", name: "org.apache.felix.gogo.jline",
version: "<version>"
//osgibundles group: "org.jline", name: "jline",
version: "<version>"

31

To access OpenMUC you can either use

./bin/openmuc remote-shell

or

telnet 127.0.0.1 6666

To exit the remote shell without stopping OpenMUC press ctrl+d.

5.7. Auto Start at Boot Time
On Debian based Linux distributions it is easy to configure automatic start of OpenMUC at boot
time. As root execute the following commands:

ln -s /path/to/openmuc/bin/openmuc /etc/init.d/openmuc
update-rc.d openmuc defaults

The above solution will not work if the openmuc start script is located on a partion that is not yet
mounted at the time the boot process attempts to open it. In this case you need copy the start script
to /etc/init.d/ and edit it to set the OPENMUC_HOME variable.

6. Drivers

6.1. Install a Driver
For installing a new driver you have two possible ways.

6.1.1. Copy driver

Copy the corresponding driver jar file from the folder "build/libs-all/" to the "bundle" folder of the
framework. Many drivers are "fat jars" which include their dependencies. An exception is the RXTX
library which cannot be packed with the jars.

6.1.2. Editing bundles configuration

In /openmuc/framework/conf/bundles.conf.gradle you can find the list of all used bundles e.g.:

osgibundles group: "org.openmuc.framework", name: "openmuc-driver-csv", version:
openmucVersion

osgibundles group: "org.openmuc.framework", name: "openmuc-webui-spi", version:
openmucVersion
osgibundles group: "org.openmuc.framework", name: "openmuc-webui-base", version:

32

openmucVersion

If you want to add a new driver to the list, e.g. M-Bus, you can do this:

osgibundles group: "org.openmuc.framework", name: "openmuc-driver-csv", version:
openmucVersion
osgibundles group: "org.openmuc.framework", name: "openmuc-driver-mbus", version:
openmucVersion
osgibundles group: "org.openmuc", name: "jrxtx", version:
"1.0.1"

osgibundles group: "org.openmuc.framework", name: "openmuc-webui-spi", version:
openmucVersion
osgibundles group: "org.openmuc.framework", name: "openmuc-webui-base", version:
openmucVersion

Afterwards you have to execute in /openmuc/framework/bin/

./openmuc update-bundles

If this is the first time using ./openmuc update-bundles you have to add the parameter -i

./openmuc update-bundles -i

6.1.3. Use a Driver with Serial Communication

When you need to use a driver that uses serial communication you have to copy the RXTX bundle to
the frameworks "bundle" folder.

cp ../dependencies/rxtx/jrxtx-1.0.1.jar ./bundle/

Additionally you need to install librxtx-java:

sudo apt-get install librxtx-java

The serial ports /dev/tty* are only accessible to members belonging to the group dialout. We
therefore have to add our user to that group. E.g. using:

sudo adduser <yourUserName> dialout

33

6.2. Modbus
Modbus Homepage: http://www.modbus.org
Modbus Protocol Specifications: http://www.modbus.org/specs.php
Modbus Master Simulator modpoll: http://www.modbusdriver.com/modpoll.html

The Modbus driver supports RTU, TCP, UDP and RTU over TCP.

Table 4. Configuration Synopsis

TCP (ethernet) UDP (ethernet) RTU (serial) RTUTCP (serial
over ethernet)

Device
Address

<ip>[:<port>] <ip>[:<port>] <serial port> <ip>[:<port>]

Settings <type> <type> <type>:<encoding>:
<baudrate>:<databit
s>:<parity>:<stopbit
s>:<echo>:<flowCon
trolIn>:<flowContro
lOut>

<type>

Channel
Address

<UnitId>:<PrimaryTable>:<Address>:<Datatyp>

DeviceAddress

For TCP, RTUTCP and UDP
The DeviceAddress is specified by an IP address and an optional port. If no port is specified, the
driver uses the modbus default port 502.

For RTU:
The DeviceAddress is specified by a serial port like /dev/ttyS0.

The driver uses the j2mod library which itself uses the jSerialComm library for
serial communication.

Settings

Table 5. Settings

Config Description/ Values

<type> RTU|TCP|RTUTCP|UDP

<encoding> SERIAL_ENCODING_RTU

<baudrate> Integer value: e.g.: 2400, 9600, 115200

<databits> DATABITS_5, DATABITS_6, DATABITS_7, DATABITS_8

<parity> PARITY_EVEN, PARITY_MARK, PARITY_NONE, PARITY_ODD, PARITY_SPACE

<stopbits> STOPBITS_1, STOPBITS_1_5, STOPBITS_2

34

http://www.modbus.org
http://www.modbus.org/specs.php
http://www.modbusdriver.com/modpoll.html

Config Description/ Values

<echo> ECHO_TRUE, ECHO_FALSE

<flowControlIn> FLOWCONTROL_NONE, FLOWCONTROL_RTSCTS_IN,
FLOWCONTROL_XONXOFF_IN

<flowControlOut> FLOWCONTROL_NONE, FLOWCONTROL_RTSCTS_OUT,
FLOWCONTROL_XONXOFF_OUT

Listing 7. Example Settings

<settings>
RTU:SERIAL_ENCODING_RTU:38400:DATABITS_8:PARITY_NONE:STOPBITS_1
:ECHO_FALSE:FLOWCONTROL_NONE:FLOWCONTROL_NONE
</settings>

ChannelAddress

The ChannelAddress consists of four parts: UnitId, PrimaryTable, Address and Datatyp which are
explained in detail in the following table.

Table 6. Parameter Description

Parameter Description

UnitId In homogenious architecture (when just MODBUS TCP/IP is used)
On TCP/IP, the MODBUS server is addressed by its IP address; therefore, the
MODBUS Unit Identifier is useless. The value 255 (0xFF) has to be used.

In heterogeneous architecture (when using MODBUS TCP/IP and MODBUS
serial or MODBUS+)
This field is used for routing purpose when addressing a device on a
MODBUS+ or MODBUS serial line sub-network. In that case, the “Unit
Identifier” carries the MODBUS slave address of the remote device. The
MODBUS slave device addresses on serial line are assigned from 1 to 247
(decimal). Address 0 is used as broadcast address.

Note: Some MODBUS devices act like a bridge or a gateway and require the
UnitId even if they are accessed through TCP/IP. One of those devices is the
Janitza UMG. To access data from the Janitza the UnitId has to be 1.

PrimaryTable PrimaryTable defines the which part of the device memory should be
accessed. Valid values: COILS, DISCRETE_INPUTS, INPUT_REGISTERS,
HOLDING_REGISTERS

Address Address of the channel/register. Decimal integer value - not hex!

35

Parameter Description

Datatyp Valid values:
BOOLEAN (1 bit)
INT16 (1 register/word, 2 bytes)
UINT16 (1 register/word, 2 bytes)
INT32 (2 registers/words, 4 bytes)
UINT32 (2 registers/words, 4 bytes)
LONG (4 registers/words, 8 bytes)
FLOAT (2 registers/words, 4 bytes)
DOUBLE (4 registers/words, 8 bytes)
BYTEARRAY[n] (n = number of REGISTERS not BYTES, 1 register = 2 bytes!)

 To store a UINT32 value it requires <valueType>LONG</valueType> for the channel.

Primary Tables and Channel Address

Valid Address Parameter Combinations

Since COILS and DISCRETE_INPUTS are used for bit access, only the data type BOOLEAN makes
sense in combinations with of one of these. INPUT_REGISTERS and HOLDING_REGISTERS are used
for register access. There is also a difference between reading and writing. Only COILS and
HOLDING_REGISTERS are readable and writable. DISCRETE_INPUTS and INPUT_REGISTERS are
read only. The following table gives an overview of valid parameter combinations of PrimaryTable
and Datatyp.

Table 7. Valid Address Parameters for reading a channel

Primary
Table

BOOLEAN SHORT INT FLOAT DOUBLE LONG BYTEARR
AY[n]

COILS x - - - - - -

DISCRETE_
INPUTS

x - - - - - -

36

../images/driver_modbustcp_address.png

Primary
Table

BOOLEAN SHORT INT FLOAT DOUBLE LONG BYTEARR
AY[n]

INPUT_RE
GISTERS

- x x x x x x

HOLDING_
REGISTERS

- x x x x x x

Table 8. Valid Address Parameters for writing a channel

Primary
Table

BOOLEAN SHORT INT FLOAT DOUBLE LONG BYTEARR
AY[n]

COILS x - - - - - -

DISCRETE_
INPUTS

- - - - - - -

INPUT_RE
GISTERS

- - - - - - -

HOLDING_
REGISTERS

- x x x x x x

Listing 8. Examples for valid addresses

<channelAddress>255:INPUT_REGISTERS:100:SHORT</channelAddress>
<channelAddress>255:COILS:412:BOOLEAN</channelAddress>

Listing 9. Examples for invalid addresses

<channelAddress>255:INPUT_REGISTERS:100:BOOLEAN</channelAddress> (BOOLEAN doesn't
go with INPUT_REGISTERS)
<channelAddress>255:COILS:412:LONG</channelAddress> (LONG does not go with COILS)

Function Codes (more detailed information about how the driver works)

The driver is based on the Java Modbus Library (j2mod) which provides read and write access via
modbus. Following table shows which modbus function code is used to access the data of the
channel.

Table 9. Relation between function code and channel address

j2mod Method Modbus Function
Code

Primary Table Access Java Data Type

ReadCoilsRequest FC 1 Read Coils Coils RW boolean

ReadInputDiscrete
sRequest

FC 2 Read Discrete
Inputs

Discrete Inputs R boolean

37

https://github.com/steveohara/j2mod

j2mod Method Modbus Function
Code

Primary Table Access Java Data Type

ReadMultipleRegis
tersRequest

FC 3 Read Holding
Registers

Holding Registers RW short, int, double,
long, float,
bytearray[]

ReadInputRegister
sRequest

FC 4 Read Input
Registers

Input Registers R short, int, double,
long, float,
bytearray[]

WriteCoilRequest FC 5 Write Single
Coil

Coils RW boolean

WriteMultipleCoils
Request

FC 15 Write
Multiple Coils

Coils RW boolean

WriteSingleRegiste
rRequest

FC 6 Write Single
Register

Holding Registers RW short, int, double,
long, float,
bytearray[]

WriteMultipleRegi
stersRequest

FC 16 Write
Multiple Registers

Holding Registers RW short, int, double,
long, float,
bytearray[]

Example

<channelAddress>255:INPUT_REGISTERS:100:SHORT</channelAddress> will be accessed
via function code 4.

6.2.1. Modbus TCP and Wago

Till now the driver has been tested with some modules of the Wago 750 Series with
the Fieldbus-Coupler 750-342

If you want to use the Modbus TCP driver for accessing a Wago device you first need to know how
the process image is build. From the process image you can derive the register addresses of your
Wago modules (AO, AI, DO, DI). You find detailed information about the process image in WAGO
750-342 Manual on page 46 and 47.

The following Examples are based on figure Wago 750-342 Process Image

*Example 1: Read AI 2 from first (left) 472-module (Register Address 0x0001)

<channelAddress>255:INPUT_REGISTERS:1:SHORT</channelAddress>

Example 2: Read DI 3 from first (left) 472-module (Register Address 0x0003)

<channelAddress>255:DISCRETE_INPUTS:3:BOOLEAN</channelAddress>

38

http://www.wago.com/wagoweb/documentation/750/eng_manu/coupler_controller/m07500342_00000000_0en.pdf
http://www.wago.com/wagoweb/documentation/750/eng_manu/coupler_controller/m07500342_00000000_0en.pdf

Example 3: Write AO 1 from first (left) 550-module (Register Address 0x0000/0x0200)

For writing only the +0x0200 addresses should be used! Since the driver accepts only a decimal
channelAddress 0x0200 must be converted to decimal. The resulting address would be:

<channelAddress>255:HOLDING_REGISTERS:512:SHORT</channelAddress>

Example 4: Write DO 2 from 501-module (Register Address 0x0000/0x0201)
For writing only the +0x0200 addresses should be used! Since the driver accepts only a decimal
channelAddress 0x0201 must be converted to decimal. The resulting address would be:

<channelAddress>255:COILS:513:BOOLEAN</channelAddress>

Example 5: Read back DO 2 from 501-module (Register Address 0x0201)

<channelAddress>255:COILS:513:BOOLEAN</channelAddress> or
<channelAddress>255:DISCRETE_INPUTS:513:BOOLEAN</channelAddress>

Wago 750-342 Process Image

39

images/modbus_wago_process_image.png

6.3. M-Bus (wired)
M-Bus is communication protocol to read out meters.

Table 10. Configuration Synopsis

ID mbus

Device Address <serial_port>:<mbus_address> or tcp:<host_address>:<port>

Settings [<baudrate>][:timeout][:lr][:ar][:d<delay>] [:tc<tcp_connection_timeout>]

Channel Address [X]<dib>:<vib>

Device Address

<serial_port> - The serial port should be given that connects to the M-Bus converter. (e.g. /dev/ttyS0,
/dev/ttyUSB0 on Linux).

<mbus_address> - The mbus adrdess can either be the the primary address or secondary address of
the meter. The primary address is specified as integer (e.g. 1 for primary address 1) whereas the
secondary address consits of 8 bytes that should be specified in hexadecimal form. (e.g.
e30456a6b72e3e4e)

tcp - with this option M-Bus over TCP is used.

<host_address> - The host address for M-Bus over TCP e.g. 192.168.8.89.

<port> - The TCP port for M-Bus over TCP e.g. 5369

Settings

<baudrate> - If left empty the default is used: "2400"

<timeout> - Defines the read timeout in ms. Default is 2500 ms. Example: t5000 for timeout of 5
seconds

<lr> - Link reset before readout.

<ar> - Application reset before readout.

d<delay> - Inserts a delay between every message, including link reset and application reset. Delay
in ms. A delay with 100 ms and activated link reset and application reset results in a total delay of
300 ms.

tc<tcp_connection_timeout> - The TCP connection timeout is need for a defined timeout when no
TCP connection could established.

Channel Address

Shall be of the format <dib>:<vib> in a hexadecimal string format (e.g. 04:03 or 02:fd48) The X
option is used for selecting a specific data record.

40

6.4. M-Bus (wireless)
Wireless M-Bus is communication protocol to read out meters and sensors.

Table 11. Configuration Synopsis

ID wmbus

Device Address <serial_port>:<secondary_address>

Settings <transceiver> <mode> [<key>]

Channel Address <dib>:<vib>

Device Address

<serial_port> - The serial port used for communication. Examples are /dev/ttyS0 (Linux) or COM1
(Windows)

<secondary_address> - The secondary address consists of 8 bytes that should be specified in
hexadecimal form. (e.g. e30456a6b72e3e4e)

Settings

<transceiver> - The transceiver being used. It can be 'amber' or 'rc' for modules from RadioCrafts.

<mode> - The wM-Bus mode can be S or T.

<key> - The key in hexadecimal form.

Channel Address

Shall be of the format <dib>:<vib> in a hexadecimal string format (e.g. 04:03 or 02:fd48)

6.5. IEC 60870-5-104
IEC 60870-5-104 is an international communication standard for telecontrol. The IEC 60870-5-104
driver uses the library from the j60870 project.
The driver is able to send general interrogation commands for sampling. For writing almost all
commands are possible.

ID iec60870

Device Address [ca=<common_address>] [;p=<port>] [;h=<host_address>]

Settings [mft=<message_fragment_timeout>] [;cfl=<cot_field_length>]
[;cafl=<common_address_field_length>] [;ifl=<ioa_field_length>]
[;mtnar=<max_time_no_ack_received>] [;mtnas=<max_time_no_ack_sent>]
[;mit=<max_idle_time>] [;mupr=<max_unconfirmed_ipdus_received>]
[;sct=<stardt_con_timeout>]

Channel Address ca=<common_address>; t=<type_id>; ioa=<ioa> [;dt=<data_type>] [;i=<index>]
[;m=<multiple>]

41

All options are separated by a semicolon.

Device Address

ca=<common_address> : Common address p=<port> : Port of the server / controlled station
h=<host_address> : Host address of the server / controlled station

Settings

mft=<message_fragment_timeout> : Message fragment timeout, SO_Timeout (default: 5.000 ms)

cfl=<cot_field_length> : Cause Of Transmission (CoT) field length. (default: 2)
cafl=<common_address_field_length> : Common Address (CA) field length. (default: 2)
ifl=<ioa_field_length> : Information Object Address (IOA) field length. (default: 3)

cont=<connection_timeout>: Connection timeout t0. (default: 30.000 ms)
mtnar=<max_time_no_ack_received> Time-out (t1) of send or test APDUs (default: 15.000 ms)
mtnas=<max_time_no_ack_sent> : Time-out for acknowledges in case of no data messages t2 < t1
(default: 10.000 ms) mit=<max_idle_time> : Time-out for sending test frames in case of a long idle
state, t3. (default: 20.000 ms)

mupr=<max_unconfirmed_ipdus_received> : Sets the number of unacknowledged I format APDUs
received before the connection will automatically send an S format APDU to confirm them. This
parameter is called w by the standard. Default is 8, minimum is 1, maximum is 32767. (default: 8)
mnoi=<max_num_of_outstanding_ipdus> : Sets the number of maximum difference send sequence
number to send acknowledge variable before Connection.send will block. This parameter is called k
by the standard. Default is 12, minimum is 1, maximum is 32767. (default: 12)

at=<allowed_types> : List of IDs (integer) of allowed ASduTypes. e.g. 1,10,36 for M_SP_NA_1(1),
M_ME_TA_1(10) and M_ME_TF_1(36) (default: all allowed)

Channel Address

Mandatory options are Common Address, Type ID and Information Object Address.

It is possible to get a single value of a Sequence Information Element, for this you can define Index
of the needed element. The first element is 0, the second 1, …

For reading values which are divided in multiple elements it can be defined how many elements
should be read as one. e.g. i=0;m=4 says it reads from the first element up to the fourth element, of a
sequence. This is only allowed for Binary State Information.

With the option Data Type it is possible to get a single quality flag.

Data Type Description

v value (default)

ts timestamp

iv in/valid

nt not topical

42

Data Type Description

sb substituted

bl blocked

ov overflow

ei elapsed time invalid

ca counter was adjusted since last reading

cy counter overflow occurred in the

6.6. IEC 61850
IEC 61850 is an international communication standard used mostly for substation automation and
controlling distributed energy resources (DER). The IEC 61850 driver uses the client library from
the OpenIEC61850 project.

ID iec61850

Device Address <host>[:<port>]

Settings [-a <authentication parameter>] [-lt <local t-selector>] [-rt <remote t-selector>]

Channel Address <bda reference>:<fc>

Channel Address

The channel address should be the IEC 61850 Object Reference and the Functional Constraint of the
Basic Data Attribute that is to be addressed separated by a colon. Note that an IEC 61850 timestamp
received will be converted to a LongValue that represents the milliseconds since 1970. Some
information is lost during this conversion because the IEC 61850 timestamp is more exact.

Settings

The defaults for TSelLocal and TSelRemote are "00" and "01" respectively. You can also set either
TSelector to the empty string (e.g. "-lt -rt"). This way they will be omitted in the connection request.

6.7. IEC 62056 part 21
The IEC 62056 part 21 driver can be used to read out meter via optical interface

Table 12. Configuration Synopsis

ID iec62056p21

Device Address <serial_port>

Settings [-d <baud_rate_change_delay>] [-t <timeout>] [-r <number_of_read_retries>] [-
bd <initial_baud_rate>] [-a <device_address>] [-fbd] [-rsc
<request_message_start_character>]

Channel Address <data_set_id>

43

Device Address

<serial_port> - The serial port should be given that connects to the M-Bus converter. (e.g. /dev/ttyS0,
/dev/ttyUSB0 on Linux).

Settings

Baud rate change delay -d sets the waiting time in milliseconds between a baud rate change default
is 0.
Timeout -t sets the response timeout in milliseconds, default is 2000.
Number of read retries -r defines the maximum of read retries, default is 0.
Baud rate -bd sets a initial baud rate e.g. for devices with modem configuration, default is 300.
Device address -a is mostly needed for devices with RS485, default is no device address.
Fixed baud rate -fbd activates fixed baud rate, default is deactivated.
Request message start character -rsc is used for manufacture specific request messages. With this
option you can change the default start character.
Read standard -rs reads the standard message and the manufacture specific message. This options
has only an affect if the Request message start character is changed.

Channel Address

<data_set_id> - Id of the data set. It is usually an OBIS code of the format A-B:C.D.E*F or on older
EDIS code of the format C.D.E.that specifies exactly what the value of this data set represents.

6.8. KNX
KNX is a standardised protocol for intelligent buildings. The KNX driver uses KNXnet/IP to connect
to the wired KNX BUS. The driver supports group read and writes and is also able to listen to the
BUS. The driver uses the calimero library.

Table 13. Configuration Synopsis

ID knx

Device Address knxip://<host_ip>[:<port>] knxip://<device_ip>[:<port>]

Settings [Address=<Individual KNX address (e. g. 2.6.52)>];[SerialNumber=<Serial
number>]

Channel Address <Group Adress>:<DPT_ID>

Device Address

The device address consists of the host IP and the IP of the KNX tunnel or router.

Channel Address

The channel address consist of the group address you want to monitor and the corresponding data
point ID. A data point consists of a main number and a subtype. For example a boolean would be
represented by the main number 1 and a switch by the subtype 001, the DPT_ID of a switch is 1.001.

44

6.9. eHZ
OpenMUC driver for SML and IEC 62056-21

Dependencies: jrxtx-1.0.1.jar (stored in dependencies folder) and jrxtx

To include the ehz driver and jrxtx-1.0.1.jar from the dependencies folder into your OpenMUC
project, include the following into your bundles.conf.gradle:

 osgibundles group: "org.openmuc.framework", name: "openmuc-driver-ehz", version:
openmucVersion
 osgibundles files("../dependencies/rxtx/jrxtx-1.0.1.jar")

Table 14. Configuration Synopsis

ID ehz

Device Address sml://<serialPort> or iec://<serialPort> e.g. sml:///dev/ttyUSB0

Settings

Channel Address <OBIScode> e.g. 10181ff (not 1-0:1.8.1*255)

scanForDevices() and scanForChannels will return the specific configuration.

6.10. SNMP
Simple Network Management Protocol (SNMP) is an Internet-standard protocol for monitoring and
management of devices on IP networks.

Dependencies: snmp4j-2.2.5.jar

Table 15. Configuration Synopsis

ID snmp

Device Address IP/snmpPort

Settings settings string

Channel Address SNMP OID address

Device Address

IP address and available SNMP port of the target device should be provided as Device Address.

Example for Device Address:

192.168.1.1/161

Settings

45

https://github.com/openmuc/jrxtx

All settings are stored in "SnmpDriverSettingVariableNames" enum.

Table 16. Setting Parameters

SNMPVersion "SNMPVersion" enum contains all available values

USERNAME string

SECURITYNAME string

AUTHENTICATIONPASSPHRASE is the same COMMUNITY word in SNMP V2c

PRIVACYPASSPHRASE string

SNMPVersion

SNMPVersion is an enum variable containing valid SNMP versions. (V1, V2c, V3)

Example for valid settings string:

SNMPVersion=V2c:USERNAME=public:SECURITYNAME=public:AUTHENTICATIONPASSPHRASE=password

In order to read specific channel, corresponding SNMP OID shall be passed.

Example for SNMP OID:

1.3.6.1.2.1.1.1.0

For scanning SNMP enabled devices in the network, range of IP addresses shall be provided. This
functionality is implemented only for SNMP V2c.

6.11. CSV
The csv driver supports sampling from a csv file. This feature can be very helpful during
application development or show cases, when no real hardware is available. For example, our
SimpleDemoApp uses data provided by the csv driver.

Table 17. Configuration Synopsis

ID csv

Device Address path to csv file (e.g. /path/to/my.csv)

Settings samplingmode=<samplingmode>[;rewind=<rewind>]

Channel Address column name

Settings

• Samplingmode configures how the csv file is sampled. Currently, three different modes are
supported:

◦ line - starts sampling from the first line of the csv file. Timestamps are ignored and each

46

sampling reads the next line.

◦ unixtimestamp - csv file must contain a column with the name unixtimestamp, values must
be in milliseconds. During sampling the driver searches the closest unixtimestamp which is
>= the sampling timestamp. Therefore, the driver keeps returning the same value for
sampling timestamps which are before the next unixtimestamp of the csv file.

◦ hhmmss - csv file must contain a column with the name hhmmss and the time values must
be in the format: hhmmss.

• rewind - If true and the last line of the csv file is reached, then the driver will start sampling
again from first line. This option can only be used in combination with sampling mode hhmmss
or line.

The columns unixtimestamp and hhmmss are part of the log files created by the AsciiLogger,
therefore the csv driver supports these files.

Listing 10. Example configuration for csv driver

<device id="smarthome">
 <description/>
 <deviceAddress>./csv-driver/smarthome.csv</deviceAddress>
 <settings>samplingmode=hhmmss;rewind=true</settings>
 <channel id="power_pv">
 <channelAddress>power_photovoltaics</channelAddress>
 <unit>W</unit>
 <samplingInterval>5s</samplingInterval>
 <loggingInterval>5s</loggingInterval>
</channel>

6.12. Aggregator
The Aggregator which performs aggregation of logged values from a channel. It uses the
DriverService and the DataAccessService. It is therefore a kind of OpenMUC driver/application mix.
The aggregator is fully configurable through the channels.xml config file.

Table 18. Configuration Synopsis

ID aggregator

Device Address virtual device e.g "aggregatordevice"

Settings

Channel Address <sourceChannelId>:<aggregationType>[:<quality>]

Channel Address

<sourceChannelId> - id of channel to be aggregated

<aggregationType> -

• AVG: calculates the average of all values of interval (e.g. for average power)

47

• LAST: takes the last value of interval (e.g. for energy)

• DIFF: calculates difference of first and last value of interval

• PULS_ENERGY,<pulses per Wh>,<max counter>: calculates energy from pulses of interval (e.g.
for pulse counter/meter). Example: PULSE_ENERGY,10,65535

<quality> - Range 0.0 - 1.0. Percentage of the expected valid/available logged records for
aggregation. Default value is 1.0. Example: Aggregation of 5s values to 15min. The 15min interval
consists of 180 5s values. If quality is 0.9 then at least 162 of 180 values must be valid/available for
aggregation. NOTE: The missing/invalid values could appear as block at the beginning or end of the
interval, which might be problematic for some aggregation types

Example:

Channel A (channelA) is sampled and logged every 10 seconds.

 <channelid="channelA">
 <samplingInterval>10s</samplingInterval>
 <loggingInterval>10s</loggingInterval>
 </channel>

Now you want a channel B (channelB) which contains the same values as channel A but in a 1
minute resolution by using the 'average' as aggregation type. You can achieve this by simply adding
the aggregator driver to your channel config file and define a the channel B as follows:

 <driver id="aggregator">
 <device id="aggregatordevice">
 <channel id="channelB">
 <channelAddress>channelA:avg</channelAddress>
 <samplingInterval>60s</samplingInterval>
 <loggingInterval>60s</loggingInterval>
 </channel>
 </device>
 </driver>

The new (aggregated) channel has the id channelB. The channel address consists of the channel id
of the original channel and the aggregation type which is channelA:avg in this example. OpenMUC
calls the read method of the aggregator every minute. The aggregator then gets all logged records
from channelA of the last minute, calculates the average and sets this value for the record of
channelB. NOTE: It’s recommended to specify the samplingTimeOffset for channelB. It should be
between samplingIntervalB - samplingIntervalA and samplingIntervalB. In this example: 50 < offset
< 60. This constraint ensures that values are AGGREGATED CORRECTLY. At hh:mm:55 the
aggregator gets the logged values of channelA and at hh:mm:60 respectively hh:mm:00 the
aggregated value is logged.

 <driver id="aggregator">
 <device id="aggregatordevice">

48

 <channel id="channelB">
 <channelAddress>channelA:avg</channelAddress>
 <samplingInterval>60s</samplingInterval>
 <samplingTimeOffset>55s</samplingTimeOffset>
 <loggingInterval>60s</loggingInterval>
 </channel>
 </device>
 </driver>

6.13. Math
The math driver is a virtual driver that does calculations or evaluates expressions based on other
numeric (FLOAT or DOUBLE) channel’s values or constants. It will read from other channels
automatically. The math driver is fully configurable through the channels.xml config file. The math
driver supports common math functions and expressions such as:

• addition and subtraction

• multiplication and division

• trigonometric functions (sin, cos, tan)

• logarithm / exponential functions

• min / max expressions

• …

For a full list of operators, please see the underlying library’s documentation.

Configuration Synopsis

Option Manda
tory

Possible values Default Description

ID yes math Selection of the
math driver

49

https://javaluator.sourceforge.net/en/doc/javadoc/

Option Manda
tory

Possible values Default Description

Chann
el
Addres
s

no A+B
A-B
-A
A*B
A/B
A^B
A%B
abs(A)
sin(A)
cons(A)
tan(A)
floor(A)
ln(A) - natural log (base e)
log(A) - base 10 log
max(A,B)
min(A,B)
ceil(A) round up
round(A)
fllor(A) - round down
sum(A,B)
random - pseudo-random
number (0..1)
…and there is even more, see
hyperlink in right column!

The
mathematical
expression to
determine the
channel value.
A and B can
either be
numbers, or
references to
other channels
in format
'§other-
channel-id§' or
mathermatical
expressions.
For a full list of
operators,
please see the
underlying
library’s
documentation
.

Setting
s

yes math-ts-
strategy=use_older_timestamp
math-ts-
strategy=use_average_timestam
p
math-ts-
strategy=use_newer_timestamp

math-ts-
strategy=use_older_timestamp

Determines
how the result
timestamp is
calculated
from the input
timestamps

To reference the values of a different channel, wrap the channel id in §'s: e.g. if the values of a
channel with id 'raw-data' shall be used, reference it as '§raw-data§'.

Records of channels are only processed if they are valid (if their Flag is VALID, in other words if
there is no error present). If there is any flag other than VALID, the calculation is aborted.

Example:

Channel A (channelA) and Channel B (channelB) are sampled every 10 seconds.

 <channelid="channelA">
 <samplingInterval>10s</samplingInterval>
 <valueType>DOUBLE</valueType>

50

https://javaluator.sourceforge.net/en/doc/javadoc/
https://javaluator.sourceforge.net/en/doc/javadoc/
https://javaluator.sourceforge.net/en/doc/javadoc/
https://javaluator.sourceforge.net/en/doc/javadoc/

 </channel>
 <channelid="channelB">
 <samplingInterval>10s</samplingInterval>
 <valueType>FLOAT</valueType>
 </channel>

Another Example:

Now you want a channel C (channelC) that contains the sum and a channel D (channelD) which
contains the difference but no less than 0:

 <driver id="math">
 <device id="my_math_device">
 <channel id="channelC">
 <channelAddress>§channelA§+§channelB§</channelAddress>
 <samplingInterval>10s</samplingInterval>
 <loggingInterval>60s</loggingInterval>
 <samplingTimeOffset>1s</samplingTimeOffset>
 <loggingTimeOffset>1s</loggingTimeOffset>
 <settings>math-ts-strategy=use_newer_timestamp</settings>
 </channel>

 <channel id="channelD">
 <channelAddress>max(§channelA§-§channelB§, 0)</channelAddress>
 <samplingInterval>10s</samplingInterval>
 <loggingInterval>60s</loggingInterval>
 <samplingTimeOffset>1s</samplingTimeOffset>
 <loggingTimeOffset>1s</loggingTimeOffset>
 </channel>
 </device>
 </driver>

Please also pay attention to the samplingTimeOffset and loggingTimeOffset. These are useful to
make sure channelC and channelD are only calculated after new measurements (records) are
available for the input channels channelA and channelB.

6.14. REST/JSON
Driver to connect an OpenMUC instance with an remote OpenMUC instance with REST.

Table 19. Configuration Synopsis

ID rest

Device Address http(s)://<address>:<port>

Settings [ct;]<username>:<password>

Channel Address <channelID>

• host_address: the address of the remote OpenMUC eg. 127.0.0.1

51

• port: the port of the remote OpenMUC eg. 8888

• ct: this optional flag defines if the driver should check the remote timestamp, before reading the
complete record

• username: the username of the remote OpenMUC

• password: the pasword of the remote OpenMUC

• channelID: the ID of the remote OpenMUC

Supported features:

• read channel

• write channel

• scan for all channels

Not supported features:

• scan for devices

• reading whole devices instead of single channel

• listening

Example:

Connecting to an remote OpenMUC instance (192.168.8.18:8888) and reading the channel
"power_grid" every 5s if the timestamp has changed.

<driver id="rest">
 <device id="example_rest_device">
 <deviceAddress>http://192.168.8.18:8888</deviceAddress>
 <settings>ct;admin:admin</settings>
 <channel id="power_grid_rest">
 <channelAddress>power_grid</channelAddress>
 <samplingInterval>5s</samplingInterval>
 </channel>
 </device>
</driver>

6.15. AMQP
Connects OpenMUC with an AMQP-Broker and writes the records from the queues to channels.
Therefore this driver makes usage of our AMQP-Library, which is described in section [amqp-lib].
For configuration of the AMQP-Connection, the values from the following table have to be set in the
channels.xml.

Table 20. Configuration Synopsis

52

ID amqp

Device Address URL of the amqp infrastructure

Settings port=<port>;vhost=<vHost>;user=<user>;password=<pw>;framework=<frame
workID>; parser=<needed Parser-Service>;buffersize=<1-
n>;ssl=<true/false>;separator=<e.g. "_">;exchange=<amqp-exchange>

Channel Address <name of amqp-queue>

Parameter description:

• framework and separator:
To add the information about the source of an amqp queue, the concept of subsection Mapping
to AMQP-Queues is used. Framework defines the prefix of the amqp queue and seperator the
char between framework and channelID.

• buffersize:
This parameter makes it possible to optimize the performance at listening and logging huge
amounts of records. The driver waits till it collected the configured number of records, before it
returns the whole list to the data manager. This decreases the number of needed tasks e.g. for
writing to a database.

Supported features:

• read channel

• write channel

• listening

Not supported features:

• scan for devices

• scan for all channels

• reading whole devices instead of single channel

After starting this bundle, it connects to the configured amqp host. The example below is listening
for the queue "SmartMeter_power_grid".

<driver id="amqp">
 <device id="Smart Meter">
 <deviceAddress>myAmqpBroker.de</deviceAddress>
 <settings>

port=5671;vhost=myVHost;user=openmuc;password=Password123;framework=SmartMeter;
 parser=openmuc;buffersize=1;ssl=true;separator=_;exchange=field1
 </settings>
 <channel id="power_grid">
 <channelAddress>power_grid</channelAddress>
 <listening>true</listening>
 </channel>

53

 </device>
</driver>

6.16. MQTT
The MQTT-Driver connects OpenMUC to a MQTT-Broker. It enables OpenMUC to listen on topics and
write records and messages to topics. The driver is based on our MQTT-Library, which is described
in section [mqtt-lib]. For configuration of the MQTT-Connection, the values from the following table
have to be set in the channels.xml.

Table 21. Configuration Synopsis

ID mqtt

Device Address URL of the mqtt broker

Settings port=<port>;parser=<needed Parser-
Service>[;username=<user>;password=<pw>] [;recordCollectionSize=<1-
n>][;ssl=<true/false>][;maxBufferSize=<0-n>;maxFileSize=<0-
n>;maxFileCount=<0-n>]
[;connectionRetryInterval=<s>][;connectionAliveInterval=<s>][;firstWillTopic=
<topic>;firstWillPayload=<payload>]
[;lastWillTopic=<topic>;lastWillPayload=<payload>][;lastWillAlways=<true/fals
e>]
[;persistenceDirectory=<data/driver/mqtt>][;retainedMessages=<true/false>]
[;proxyConfiguration=http://user:pass@host:port | socks4://host:port |
socks5://host:port]

Channel Address <name of mqtt-topic>

Parameter description:

Parameters marked with [] are optional parameters.
NOTE: If optional parameters are used, then all parameters included in the brackets need to be
specified (see grouping above).

• port: Port for MQTT communication

• parser: Identifier of needed parser implementation e.g. openmuc

• [username]: Name of your MQTT account

• [password]: Password of your MQTT account

• [recordCollectionSize]:
This parameter makes it possible to optimize the performance of listening and logging huge
amounts of records. The driver waits until the configured number of records is collected, before
returning the list to the data manager. This decreases the number of needed tasks e.g. for
writing to a database.

• [ssl]: true enable ssl, false disable ssl

• [maxBufferSize]: Max buffer size in kB. If limit is reached than buffer will be written to file.

54

• [maxFileSize]: Max file size in kB. If

• [maxFileCount]: Number of files to be created for buffering

• [connectionRetryInterval]: Connection retry interval in s – reconnect after given seconds
when connection fails

• [connectionAliveInterval]: Connection alive interval in s – periodically send PING message to
broker to detect broken connections

• [firstWillTopic]: Topic on which firstWillPayload will be published on successful connections

• [firstWillPayload]: Payload of the first will message

• [lastWillTopic]: Topic on which lastWillPayload will be published

• [lastWillPayload]: Payload of the last will message

• [lastWillAlways]: true: publish last will payload on every disconnection, including intended
disconnects by the client. false publish only on errors/connection interrupts

• [persistenceDirectory]: directory to store data for file buffering e.g. data/driver/mqtt>

• [retainedMessages]: true use retained messages (last message is kept by server, message will
be sent to new subscribers), false use normal messages (new subscribers will not automatically
receive the last sent message)

• [proxyConfiguration]: Proxy configuration used to connect to the broker. Http, socks4 and
socks5 proxies are supported.

To get a more clean looking channels.xml it is also possible to use line breaks instead of semicolons
or a mix of both.

Supported features:

• write channel

• listening

Not supported features:

• read channel

• scan for devices

• scan for all channels

• reading whole devices instead of single channel

After starting this bundle, it connects to the configured mqtt host. The example below is listening
for the topic "SmartMeter/power_grid". It also uses firstWill and lastWill for sending connection
status messages.

<driver id="mqtt">
 <device id="Smart Meter">
 <deviceAddress>myMqttBroker.de</deviceAddress>
 <settings>
 port=1883;username=openmuc;password=Password123

55

 parser=openmuc;bufferSize=2;ssl=true
 lastWillTopic=my/topic;lastWillPayload=Offline;lastWillAlways=true
 firstWillTopic=my/topic;firstWillPayload=Online
 </settings>
 <channel id="power_grid">
 <channelAddress>SmartMeter/power_grid</channelAddress>
 <listening>true</listening>
 </channel>
 </device>
</driver>

7. Dataloggers

7.1. ASCII Logger

7.1.1. General Information

The log files adhere to the following naming scheme: YYYYMMDD_loggingInterval.dat If you have
channels with different logging intervals or change a channels logging interval a new file is created
for that logging interval. If OpenMUC is stopped and restarted on the same day or there are
problems like a power outage that create holes in the data, new files will be created for this date
while the old ones will be renamed .old or .old2 .old3 etc. in case it happens multiple times on one
day.

Parameter Description

loggerId asciilogger

channel options

loggingEvent not supported

loggingSettings not supported

7.1.2. Configuration

For the ASCII Logger there are two options you can change.

You can choose whether you want enable file filling mode instead of renaming asciidata files to
*.old after a OpenMUC restart. This will fill the time frame without data with data points that show
err32 for every channels value. You do this by adding the following line:

org.openmuc.framework.datalogger.ascii.fillUpFiles = true

The other option concerns the file path of the logger. By default it is set to
<openmuc_folder>/data/ascii or you can change it through adding this line:

56

org.openmuc.framework.datalogger.ascii.directory = <path>

7.1.3. Structure

The log files' header shows you the following information:

• ies format version

• file name

• file info

• timezone relative to gmt (i.e. +1)

• timestep_sec (time between entries in seconds)

It also shows information about the columns, the first three columns show the time while the
others are the logged channels.

• col_no

• col_name

• confidential

• measured

• unit

• category (data type and length)

• comment

7.2. AMQP Logger

7.2.1. General Information

The logged OpenMUC-Records are send as JSON to a given AMQP-Broker.

Parameter Description

loggerId amqplogger

channel options

loggingEvent supported

loggingSettings amqplogger:queue=<your.queue>

7.2.2. Configuration

You need the following AMQP specific properties for the configuration of the used Broker.

org.openmuc.framework.datalogger.amqp.host = localhost
org.openmuc.framework.datalogger.amqp.port = 5672

57

org.openmuc.framework.datalogger.amqp.ssl = false
org.openmuc.framework.datalogger.amqp.vhost = /
org.openmuc.framework.datalogger.amqp.username = guest
org.openmuc.framework.datalogger.amqp.password = guest

7.2.3. Mapping to AMQP-Queues

Every OpenMUC-Channel will be mapped to an AMQP-Queue with the pattern
<framework><separator><channelId> in your broker. They are created automatically after starting
OpenMUC. While the <channelId> is set in the channels.xml, you have to define the name of your
framework with the following property additionally.

Set the unique identifier of this framework (this is also the exchange name)
org.openmuc.framework.datalogger.amqp.framework = openmuc

7.2.4. Serialisation

The serialisation is done by another OpenMUC-Bundle. Therefore you have to define which parser
should be used. The serialisation of an OpenMUC-Record to it’s own JSON format is done with the
usage of the default OpenMUC-Parser like in the example. A custom parser can be used to serialize
the record in a custom JSON format, by implementing the parser interface from the OpenMUC-SPI
project according to the Parser-OpenMUC project and use it’s parser id for this property.

Set the parser with which to serialize records
org.openmuc.framework.datalogger.amqp.parser = openmuc

7.3. MQTT Logger

7.3.1. General Information

Logs OpenMUC records to a MQTT broker. Records are translated to byte messages with the
configured ParserService. The logger implements automatic connection recovery and message
buffering.

Parameter Description

loggerId mqttlogger

channel options

loggingEvent supported

loggingSettings mqttlogger:topic=<your/topic>

7.3.2. Installation

To be able to use the logger in the OpenMUC framework you need to modify the

58

conf/bundles.conf.gradle and conf/config.properties file

bundles.conf.gradle

Add following dependencies to the bundles.conf.gradle file.

 osgibundles group: "org.openmuc.framework", name: "openmuc-datalogger-mqtt",
version: openmucVersion
 osgibundles group: "org.openmuc.framework", name: "openmuc-lib-ssl",
version: openmucVersion
 osgibundles group: "org.openmuc.framework", name: "openmuc-lib-mqtt",
version: openmucVersion
 osgibundles group: "org.openmuc.framework", name: "openmuc-lib-osgi",
version: openmucVersion

 //add your project specific bundle here, which provides the ParserService
implementation, example with OpenMUC parser:
 osgibundles group: "org.openmuc.framework", name: "openmuc-lib-parser-openmuc",
version: openmucVersion

config.properties

Add following line to config.properties to provide sun.misc package.

org.osgi.framework.system.packages.extra=sun.misc

7.3.3. Configuration

The logger is configured via dynamic configuration

Listing 11. org.openmuc.framework.datalogger.mqtt.MqttLogger.cfg

URL of MQTT broker
host=localhost

port for MQTT communication
port=1883

(Optional) password of your MQTT account
password=

(Optional) name of your MQTT account
username=

identifier of needed parser implementation
parser=openmuc

directory to store data for file buffering
persistenceDirectory=/data/mqtt/

59

file buffering: buffer size in kB
maxBufferSize=1

file buffering: number of files to be created
maxFileCount=2

#file buffering: file size in kB
maxFileSize=2

usage of ssl true/false
ssl=false
if true compose log records of different channels to one mqtt message
multiple=false

connection retry interval in s – reconnect after given seconds when connection fails
connectionRetryInterval=10

connection alive interval in s – periodically send PING message to broker to detect
broken connections
connectionAliveInterval=10

(Optional) LWT configuration
topic on which lastWillPayload will be published
lastWillTopic=
last will payload
lastWillPayload=
(Optional) also publish last will payload on client initiated disconnects
(true/false)
lastWillAlways=false

(Optional) "first will" configuration
topic on which firstWillPayload will be published on successful connections
firstWillTopic=
first will payload
firstWillPayload=
(Optional) Proxy to use to connect to broker. Supported formats:
http://user:password@host:port or http://host:port or socks4://host:port or
socks5://host:port
proxyConfiguration=

It relies on a configured key and trust store when using SSL/TLS (see below). Brokers without
authentication are supported, just omit username/password.

When the parser supports serializing multiple records at once then multiple can be set true.
Otherwise, every record is sent in a single MQTT message.

Enable SSL communication

To be able to verify the authenticity of the broker a valid SSL certificate of the broker needs to be

60

added to the TrustStore. When using 2-way SSL the broker verifies the authenticity of the logger
and a valid SSL certificate needs to be added to the KeyStore.

OpenMUC ships a key and trust store by default so no creation is necessary. See SSL Library for
more information.

7.4. SlotsDB Logger

7.4.1. General Information

Parameter Description

loggerId slotsdb

channel options

loggingEvent not supported

loggingSettings not supported

7.5. SQL Logger

7.5.1. General Information

Writes OpenMUC records to a sql database.

Parameter Description

loggerId sqllogger

channel options

loggingEvent supported

loggingSettings sqllogger:<empty>

7.5.2. Database Schema

This logger creates a meta table at the first start, which is named 'openmuc_meta' and contains the
configuration of the logged channels.

COLOU
MN_NA
ME

COLOUMN_TYPE CHARACTER_MAXIMUM_LENGTH

channeli
d

VARCHAR(30) 30

loggingi
nterval

VARCHAR(10) 10

listening VARCHAR(5) 5

… … …

61

A new data table is created for every Channel supported by OpenMUC that holds the info:

COLOUMN_NAME DATA_TYPE CHARACTER_MAXIMUM_LEN
GTH

time timestamp with time zone

flag smallint 10

value numeric

The data table and the schema of an example Channel("power_photovoltaics") looks like the
following:

time flag VALUE

2024-06-13 09:28:55.0 1 2.346

… … …

7.5.3. Installation

To be able to use the logger in the OpenMUC framework you need to modify the
conf/bundles.conf.gradle. Different database engines like h2 or postgresql are supported. The
needed library bundle depends of the used engine. Add following dependencies to the
bundles.conf.gradle file.

 osgibundles group: "org.openmuc.framework", name: "openmuc-datalogger-sql",
version: openmucVersion
 osgibundles group: "org.openmuc.framework", name: "openmuc-lib-osgi",
version: openmucVersion

 //add your database engine specific bundle for h2 or postgresql here:
 osgibundles group: 'org.postgresql', name: 'postgresql', version: '42.2.14'
 osgibundles group: 'com.h2database', name: 'h2', version: '1.4.200'

7.5.4. Configuration

The logger is configured via dynamic configuration

The following properties can be defined at
conf/properties/org.openmuc.framework.datalogger.sql.SqlLoggerService.cfg

(Optional) seconds after a timeout is thrown
socket_timeout=5
Password for postgresql
psql_pass=<pw_postgres>
Password for the database user
password=<pw_user>
(Optional) local time zone
timezone=Europe/Berlin

62

(Optional) keep tcp connection alive
tcp_keep_alive=true
User of the used database
user=<database_user>
(Optional) SSL needed for the database connection
ssl=false
URL of the used database
#url=jdbc:h2:retry:file:./data/h2/h2;AUTO_SERVER=TRUE;MODE=MYSQL
url=jdbc:postgresql://127.0.0.1:5432/<database_user>

7.5.5. Migrating database to be compatible with newer H2 version

Edit the path and the prefix of the database in the gradle.build file of the sqllogger. Making a
Backup of the Database is recommended. Then run:

openmuc migrateh2

Migrating manually:

Download versions 1.4.200 and 2.0.206 from here: http://www.h2database.com/html/download-
archive.html and unpack them. Copy the Database to another folder and execute the following
commands:

java -cp <path to 1.4.200 jar> org.h2.tools.Script -url jdbc:h2:<path to database>
-user <username> -password <password> -script <choose a script location path> -options
compression zip
java -cp <path to 2.0.206 jar> org.h2.tools.RunScript -url jdbc:h2:<choose path to new
database> -user <username> -password <password> -script <script location path>
-options compression zip

Then replace the old Database (or keep it as Backup) with the upgraded one.

8. Libraries

8.1. AMQP
The AMQP library uses the RabbitMQ Java Client to connect to the broker.

The library consists of four classes:

• AmqpSettings

• AmqpConnection

• AmqpReader

• AmqpWriter

63

http://www.h2database.com/html/download-archive.html
http://www.h2database.com/html/download-archive.html

It implements automatic connection recovery with message buffering. If only publishing (or
consuming) is needed only the AmqpConnection and the AmqpReader (or AmqpWriter) needs to be
instantiated.

8.1.1. Connecting to a broker (AmqpSettings/AmqpConnection)

An instance of an AmqpConnection represents a connection to a broker. If multiple connections are
needed one can simply create multiple instances.

To create an AmqpConnection instance one first needs to create an instance of AmqpSettings and
pass it to the constructor of the AmqpConnection. In that way, it is up to the developer to decide
where to get the connection properties from.

The connection to the broker is going to be created as soon as the constructor of AmqpConnection is
executed.

Declaring any queues is not needed as AmqpReader and AmqpWriter do this already.

Before the application stops one should disconnect() first to clean up any resources.

Example with local RabbitMQ Broker:

String host = "localhost";
int port = 5672;
String virtualHost = "/";
String username = "guest";
String password = "guest";
boolean ssl = false;
String exchange = "example";

AmqpSettings settings = new AmqpSettings(
 host, port, virtualHost, username, password, ssl, exchange
);

AmqpConnection connection = new AmqpConnection(settings);

// Before stopping the application:
connection.disconnect();

8.1.2. Consuming messages (AmqpReader)

To consume messages from the broker one has two options:

Manually retrieving messages

This is the simplest way to get a message. The method byte[] read(String queue) returns a single
message retrieved from the given queue or null if the queue was empty.

Example:

64

AmqpReader reader = new AmqpReader(connection);
byte[] receivedMessage = reader.read("exampleQueue");

if (receivedMessage == null) {
 // No message received
} else {
 // Handle received message
}

Listening for messages

This is the recommended way to receive messages, as the messages are received in the moment the
broker receives them. One can listen to a collection of queues with a listener which gets notified
when a message in any of those queues is received. When listening to a single queue just pass a
collection singleton.

Example:

AmqpReader reader = new AmqpReader(connection);
Collection<String> queues = new ArrayList<>(2);
queues.add("exampleQueue1");
queues.add("exampleQueue2");

reader.listen(queues, (String queue, byte[] message) -> {
 if (queue == "exampleQueue1") {
 // handle message
 } else {
 // handle message
 }
});

8.1.3. Publishing messages (AmqpWriter)

To publish a message call void write(String routingKey, byte[] message) with the routing key and
the message. The message will be published to the exchange specified in the AmqpConnection.

Example:

AmqpWriter writer = new AmqpWriter(connection);

String routingKey = "test.logger";
byte[] message = "Hello World!".getBytes();
writer.write(routingKey, message);

65

8.2. MQTT
The MQTT library uses the HiveMQ MQTT Client to connect to the broker.

The library consists of several classes with the most important listed below:

• MqttSettings

• MqttConnection

• MqttReader

• MqttWriter

It implements automatic connection recovery with message buffering. Also LWT (Last Will and
Testament) is supported with additional "first will" feature (see below). If only publishing (or
subscribing) is needed only the MqttConnection and the MqttReader (or MqttWriter) needs to be
instantiated.

8.2.1. LWT (Last Will and Testament) and first will

The Last Will and Testament feature in the MQTT protocol offers clients an opportunity to send a
last will message on a last will topic after ungraceful disconnects.

This is achieved by sending a regular MQTT message together with the CONNECT message to the
broker. If the broker detects a broken connection (e.g. no PING message was received after the
connection alive interval) it will send the last will payload to all clients subscribed to the last will
message topic.

For convenience this library can also send the LWT on intentional disconnects, i.e. when
disconnect() is called and LWT is properly configured (with lastWillAlways=true).

Also a "first will" is implemented. This is a regular PUBLISH packet sent immediately after the
connection is initiated.

8.2.2. Connecting to a broker (MqttSettings/MqttConnection)

An instance of an MqttConnection represents a connection to a broker. If multiple connections are
needed one can simply create multiple instances.

To create an MqttConnection instance one first needs to create an instance of MqttSettings and pass
it to the constructor of the MqttConnection. In that way, it is up to the developer to decide where to
get the connection properties from. If needed, a proxy to connect to the broker can be set up.

The connection is instantiated when connect() is called. It’s important to create needed instances of
MqttWriter and/or MqttReader before calling connect().

Before the application stops one should disconnect() first to clean up any resources.

Example with local Mosquitto Broker (with default settings):

66

String host = "localhost";
int port = 1883;
String user = null;
String pw = null;
boolean ssl = false;
long maxBufferSize = 1;
long maxFileSize = 2;
int connRetryInterval = 5;
int connAliveInterval = 10;
String persistenceDirectory = "data/mqtt/app"
.....

MqttSettings settings = new MqttSettings(
 host, port, user, pw, ssl, maxBufferSize, maxFileSize, maxFileCount,
connRetryInterval,
 connAliveInterval, persistenceDirectory,
);

// Create MqttReader and/or MqttWriter objects here!

MqttConnection connection = new MqttConnection(settings);

// Before stopping the application:
connection.disconnect();

8.2.3. Subscribing/listening to topics (MqttReader)

One can listen to a collection of topics with a listener which gets notified when a message in any of
those topics is received. When listening to a single topic just pass a collection singleton.

Example:

MqttReader reader = new MqttReader(connection);
// Note connect() is called after MqttReader instance creation
connection.connect();
Collection<String> topics = new ArrayList<>(2);
topics.add("example/topic/1");
topics.add("example/topic/2");

reader.listen(queues, (String topic, byte[] message) -> {
 if (topic == "example/topic/1") {
 // handle message
 } else {
 // handle message
 }
});

67

8.2.4. Publishing messages (MqttWriter)

To publish a message call void write(String topic, byte[] message).

Example:

MqttWriter writer = new MqttWriter(connection);
connection.connect();

String topic = "test/logger";
byte[] message = "Hello World!".getBytes();
writer.write(topic, message);

8.3. OSGI
Bundle: openmuc-lib-osgi

This library provides an API to make the usage of OSGi concepts more comfortable. Main goals are
dynamic providing and subscription of OSGi services and their configuration.

8.3.1. OSGi Service Registration

This section covers:

• How to provide your service to the OSGi service registry?

• How to subscribe to a service provided by the OSGi service registry?

RegistrationHandler

First of all, an instance of RegistrationHandler has to be created. It takes an instance of
org.osgi.framework.BundleContext as parameter, which can be obtained from the activate method.
It is useful to define the RegistrationHandler as global attribute. So it can be used at different points
in your code.

@Activate
public void activate(BundleContext context) {
 RegistrationHandler registrationHandler = new RegistrationHandler(context);
}

Providing a custom service

For providing a new service class, the following method can be used. The example is based on our
AmqpLogger. To use this method, it is required that your class implements the interface
org.osgi.service.cm.ManagedService. Otherwise, it is impossible to use the dynamic configuration,
which is described in the next section. If you don’t want to use the dynamic configuration, the
RegistrationHandler provides similar methods to provide OSGi services, which doesn’t implement
the ManagedService interface.

68

In our case, the first parameter is the class name of the DataLoggerService interface and the second
is an instance of the class, which implements this interface. As third parameter the full qualified
class name of our concrete implementation is used (pid), which is important for the configuration
later.

String pid = AmqpLogger.class.getName();
registrationHandler.provideInFramework(DataLoggerService.class.getName(), amqpLogger,
pid);

Subscribe for a service

A subscription for a specific service can be done with the RegistrationHandler as well. The given
example subscribes to all instances of the interface DataLoggerService. Handling of a new received
service instance can be established with a lambda on a very comfortable way. The received
instance has the type object and must be casted in the concrete type. It is advisable to check for null
references, because it is possible, that no service registration exists or the provided service is
removed. In this case, a null reference will be received from the OSGi Service Registry.

registrationHandler.subscribeForService(DataLoggerService.class.getName(), (instance)
-> {
 if (instance != null)
 this.loggerService = (DataLoggerService) instance;
});

Clean up

To keep the OSGi Service Registry clean, it is helpful to remove all provided services and
subscriptions, when your bundle is going down. This can be done in the bundle specific deactivate
method, like in the following example. Call the remove method of our RegistrationHandler. This
removes your provided and subscribed services from the framework and avoids, that code of
uninstalled bundles stays in the Service Registry.

@Deactivate
public void deactivate() {
 registrationHandler.removeAllProvidedServices();
}

8.3.2. OSGi Dynamic Configuration

OSGi provides the possibility to change the configuration of bundles at runtime. For this purpose
the bundle FileInstall of the Apache Felix project (org.apache.felix.fileinstall-*.jar) must be
added to the framework under framework/conf/bundles.conf.gradle. It is useful to define a
directory where the configuration files will be stored. This can be configured in
conf/system.properties e.g.:

69

##################### Felix FileInstall
felix.fileinstall.dir=properties
felix.fileinstall.poll=5000

For correct functionality it is important to create a subdirectory under framework/conf/ with the
previous defined name, in this case properties. The following subsections help you to implement
dynamic configurations for your service.

PropertyHandler

First of all it is required to build a class with all properties of your service, which should be
updateable at runtime. Therefore, the class GenericSettings has to be extended like in this example.

public class Settings extends GenericSettings {

 public static final String USERNAME = "username";
 public static final String PASSWORD = "password";
 public static final String PORT = "port";
 public static final String HOST = "host";

 public Settings() {
 super();
 properties.put(USERNAME, new ServiceProperty(USERNAME, "name of your AMQP
account", null, true));
 properties.put(PASSWORD, new ServiceProperty(PASSWORD, "password of your AMQP
account", null, true));
 properties.put(PORT, new ServiceProperty(PORT, "port for AMQP communication",
null, true));
 properties.put(HOST, new ServiceProperty(HOST, "URL of AMQP broker",
"localhost", true));
 }
}

Extend the given property map with new instances of the class ServiceProperty. The instantiation
needs the key and description of the property. Furthermore, you can provide a default value and
mark the property as optional or mandatory. The OSGi lib will validate the configuration against
the mandatory flag and will report a waring if a mandatory property is missing.
The next step is to instantiate the PropertyHandler with this settings and the pid which corresponds
to the class implementing the ManagedService. The following examples is based on the
AmqpLogger:

public class AmqpLogger implements DataLoggerService, ManagedService {

 ...

 public AmqpLogger() {
 String pid = AmqpLogger.class.getName();

70

 settings = new Settings();
 propertyHandler = new PropertyHandler(settings, pid);
 }

At bundle start a new .cfg file with default values is created in the properties subdirectory e.g.:
org.openmuc.framework.datalogger.amqp.AmqpLogger.cfg

name of your AMQP account
username=

password of your AMQP account
password=

port for AMQP communication
port=

URL of AMQP broker
host=localhost

If the .cfg file already exists at bundle start then this file is used and will not be overwritten with
default values. This text file can be edited multiple times at runtime and will be parsed from
Apache Felix FileInstall after it is saved. The file is parsed as an instance of the java type Dictionary
and is given to the linked service. This linking is described in the following subsection.

NOTE: If you develop a new service with dynamic configuration, then run the framework once, so
that the openmuc-lib-osgi generates the .cfg file with default values for you. Afterwards, you can
edit the file.

Managed Service

For updating a service class at runtime, it has to implement the interface
org.osgi.service.cm.ManagedService. This interface defines a method public void
updated(Dictionary<String, ?> propertyDict). Every time the properties in the internal OSGi
database for this specific service are updated, for example through the Apache Felix FileInstall, the
method is called with a new instance of type Dictionary. The linking of this ManagedService with
the configuration file is done by using the same name for the service registration in subsection
[provide-ref] and instantiating our PropertyHandler. Because of this, the name of the configuration
file and the full qualified class name are equal.
The given dictionary contains key-value pairs with the properties of the service specific settings
class and can be handled like in the following example:

@Override
public void updated(Dictionary<String, ?> propertyDict) throws ConfigurationException
{
 DictionaryPreprocessor dict = new DictionaryPreprocessor(propertyDict);
 if (!dict.wasIntermediateOsgiInitCall()) {
 tryProcessConfig(dict);
 }

71

}

private void tryProcessConfig(DictionaryPreprocessor newConfig) {
 try {
 propertyHandler.processConfig(newConfig);
 if (propertyHandler.configChanged()) {
 //Properties are updated, trigger a service specific reaction
 }
 } catch (ServicePropertyException e) {
 logger.error("update properties failed", e);
 //Do some reaction till properties are valid again
 }
}

NOTE: Since the configuration can be changed at any time you need to implement a robust
handling of the properties. Depending on your service you might validate the properties against
each other. In general, the user could update just one property and saves the properties. This could
result in a inconsistent property combination. You either make sure that the user knows that he
should change property x, y and z at once or you implement a robust handling (better option). For
example, this could require to close the current communication connection and reconnect with the
new properties.

8.4. Parser-Service
The Parser-Service is part of the OpenMUC core SPI bundle and provides methods to serialize and
deserialize OpenMUC records. It is used by the MQTT and AMQP logger but can be also used inside
OpenMUC drivers and applications.

8.4.1. Accessing a specific Parser-Service

Bundles implementing the ParserService interface (like the OpenMUC-Parser see below) registering
their parserID at the OSGi service registry. The following code describes, how a Parser-Service and
its ID can be accessed. The given parserID makes it possible to identify the concrete
implementation, e.g. "openmuc". Therefore is the instance of the given BundleContext needed.

String serviceInterfaceName = ParserService.class.getName();
ServiceReference<?> serviceReference =
bundleContext.getServiceReference(serviceInterfaceName);

if (serviceReference != null) {
 String parserId = (String) serviceReference.getProperty("parserID");
 ParserService parser = (ParserService) bundleContext.getService(serviceReference);
}

Alternatively it’s possible to import and instantiate a Parser-Implementation over the java
classpath. But this increases the dependencies of your bundle and prevents the advantages of OSGi.

A more complex example with event based registration can be found in the implementation of the

72

MQTT logger.

8.4.2. OpenMUC-Parser

The default OpenMUC-Parser is provided in the openmuc-lib-parser-openmuc project. It
implements the ParserService-Interface for serialisation and deserialisation of OpenMUC Records.
This services is provided and can be accessed over the OSGi service registry as shown in the section
before. It registers its service with the value "openmuc" for the property "parserID". The serialized
message is represented in JSON with the following format.

{"timestamp":1587974340000,"flag":"VALID","value":6.67}

8.4.3. Custom Parser

For adding a custom parser to OpenMUC, the ParserService-Interface from the SPI-Project has to be
implemented. After this the implementation must be registered in the OSGi service registry.
Therefore use the given instance of your BundleContext.

@Activate
public void activate(BundleContext context) {
 Dictionary<String, Object> properties = new Hashtable<>();
 properties.put("parserID", "<myCustomParser>");

 String serviceName = ParserService.class.getName();

 registration = context.registerService(serviceName, new MyParserServiceImpl(),
properties);
}

8.5. SSL
Key/Trust Store

To get the certificates of a server one can easily use a browser and click on the lock sign next to the
URL to download it. Alternatively on *nix one can use the tool openssl:

openssl s_client -connect host:port -showcerts [-proxy host:port]

Copy the needed certificates into a file i.e. cert.crt (beginning with -----BEGIN CERTIFICATE-----
ending with -----END CERTIFICATE-----. Add them to the store:

keytool -keystore conf/truststore.jks -importcert -file cert.crt

The default password is changeme. We want to change that:

73

keytool -keystore conf/truststore.jks -storepasswd

You can also import certificates from another store. Prefer importing over just using the other store
directly as the store type needs to be PKCS#12.

keytool -importkeystore -srckeystore otherstore.jks -destkeystore conf/truststore.jks

Editing conf/keystore.jks is done analog to the Trust Store.

Edit /conf/system.properties to reflect the changes:

org.openmuc.framework.truststore = conf/truststore.jks
org.openmuc.framework.keystore = conf/keystore.jks
org.openmuc.framework.truststorepassword = changeme
org.openmuc.framework.keystorepassword = changeme

In order to use SSL, the following needs to be added to bundles.conf.gradle:

osgibundles group: "org.openmuc.framework", name: "openmuc-lib-ssl", version:
<openmucVersion>

9. WebUI

9.1. Plugins
Plotter

Plugin which provides plotter for visualization of current and historical data

Channel Access Tool

Plugin to show current values of selected channels. Provides possibility to set values.

Channel Configurator

Plugin for channel configuration e.g. channel name, sampling interval, logging interval

Media Viewer

Plugin which allows to embed media files into OpenMUC’s WebUI

User Configurator

Plugin for user configuration

9.2. Context Root
The servlet context root of the OpenMUC WebUI can be configured, by setting the

74

org.apache.felix.http.context_path system property.

org.apache.felix.http.context_path=/muc1

This must be a valid path starting with a slash and not ending with a slash (unless it is the root
context).

9.3. HTTPS
You can access the WebUI over https as well: https://localhost:8889. To make the framework more
secure you could disable http by setting org.apache.felix.http.enable in the conf/system.properties
file to false.

9.4. Custom Plugins
You can include your own Plugins in the OpenMUC WebUI by creating a java class that extends the
WebUiPluginService. This class also has to be annotated as a component. The two functions getAlias
and getName have to be overridden. The alias is used to identify the plugin while the name will be
displayed in the WebUI.

@Component(service = WebUiPluginService.class)
public final class SamplePlugin extends WebUiPluginService {

 @Override
 public String getAlias() {
 return "sampleplugin";
 }

 @Override
 public String getName() {
 return "Sample Plugin";
 }

}

In order to display an icon above the plugins name, the file needs to be called icon and saved under
samplePlugin/src/main/resources/images.

9.5. Visualisation
First you need a svg and assign all the svg Elements a unique id. You can include an external svg as
an Object Element or you can create the svg directly in html. Either way the Element containing the
svg needs an id which you can then use to access the svg in javascript.

svg_document = document.getElementById('samplePluginGraphic').contentDocument;

75

https://localhost:8889

Now you can manipulate the Elements of the svg, the easiest way to do this is through
getElementById for a single Element or getElementsByClass for multiple Elements.

sampleText = svg_document.getElementById("sampleTextField");
sampleText.textContent = channel.record.value;

Aside from changing what is displayed you can also manipulate the css in this way. The following
example would change the displayed texts color to blue.

sampleText.style.fill = "blue";

10. REST Server
The openmuc-server-restws bundle manages a RESTful web service to access all registered
channels of the framework. The RESTful web service is accessed by the same port as the web
interface mentioned in Chapter 2.

The address to access the web service using the provided demo/framework folder
is 'http://localhost:8888/rest/'

10.1. Requirements
In order to start the RESTful web service, the following bundle must be provided:

• Bundle that provides an org.osgi.service.http.HttpService service. In the demo framework, that
service is provided by the org.apache.felix.http.jetty bundle.

This bundles is already provided by the demo framework. The RESTful web service will start
automatically with the framework without additional settings.

10.2. Accessing channels
The latest record of a single channel can be accessed, by sending a GET request at the address:
'http://server-address/rest/channels/{id}' where {id} is replaced with the actual channel ID. The
result will be latest record object of the channel encoded in JSON with the following structure:

Listing 12. Record JSON

{
 "timestamp" : time_val, /*milliseconds since Unix epoch*/
 "flag" : flag_val, /*status flag of the record as string*/
 "value" : value_val /*actual value. Omitted if "flag" != "valid"*/
}

You can access logged values of a channel by adding

76

'/history?from=fromTimestamp&until=untilTimestamp' to the channel address, fromTimestamp
and untilTimestamp are both milliseconds since Unix epoch (1970-01-01 00:00:00). The result is a
collection of records encoded as JSON.

Additionally, the records off all available channels can be read in one go, by omitting the ID from
the address. The result is a collection of channel objects encoded in JSON using this structure:

Listing 13. ChannelCollection JSON

[
 {
 "id" : channel1_id, /*ID of the channel as string*/
 "record" : channel1_record /*current record. see Record JSON*/
 },
 {
 "id" : channel2_id,
 "record" : channel2_record
 }
 ...
]

New records can be written to channels by sending a PUT request at the address that represents a
channel. The data in the put request is a record encoded as specified in Record JSON above.

If HTTPS is used to access the REST server then HTTP basic authentication is required. The login
credentials are the same as the one used to log into the web interface of the OpenMUC Framework.

10.3. CORS
The rest Server has the ability to handle CORS(Cross-Origin Resource Sharing). CORS is explained in
detail here. Typically this functionality is needed when your browser sends an OPTIONS request
instead of the request (f.e. GET, POST etc.) that you intended to send. Per default CORS is is
deactivated for the rest Server. The functionality can be activated via the system.properties file
located in the openmuc/framework/conf/ directory. If the following lines are not there add them.

Listing 14. system.properties

Activate CORS functionality for the rest Server
org.openmuc.framework.server.restws.enable_cors = true

Origins and methods for CORS , for each origin semicolon separated
org.openmuc.framework.server.restws.url_cors = http://localhost:4200;
http://localhost:8456
org.openmuc.framework.server.restws.methods_cors = GET, PUT; POST
org.openmuc.framework.server.restws.headers_cors = Authorization, Content-Type;
Authorization

The variable enable_cors activates or deactivates the support for CORS. The variables for url_cors,
methods_cors, header_cors defines the allowed origins and the methods these origins are allowed

77

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

to send to the server. Multiple origins are semicolon separated with the methods and headers
separated by the same order as the origins. The methods and headers for each origin are then
separated by comma. This means that in the above example the origin:

http://localhost:4200 is a trusted origin which is allowed to send GET and PUT requests and uses the
headers Authorization and Content-Type.
http://localhost:8456 is a trusted origin which is allowed to send POST requests and uses the header
Authorization.

11. IEC 61850 Server
The IEC 61850 service creates an IEC 61850 server with a mapping between OpenMUC and a
specified IEC 61850 device. The mapping is done through serverMapping in the channels.xml. The
IEC 61850 service then sends the incoming data to the device whenever there is new data on the
OpenMUC channel.

Please note that the IEC 61850 attributes referenced in channels.xml need to match the server
configuration, usually provided in a .cid-file .

ServerSettings

General settings of the IEC 61850 server are read from the file
framework/conf/properties/org.openmuc.framework.server.iec61850.server.Iec61850Server.cfg . The
file is created with default settings if it does not exist. The below table shows the available settings:

Table 22. Server settings

Setting Mandato
ry

Values Default Description

port no string 10003 Port of the IEC 61850 device

sclPath yes string empty scl Path of the .cid file used to specify the
server structure

schedulingEnabled no boolean true Enable IEC 61850 scheduling, see below for
required channel definitions

OpenMUC comes with a demo application preconfigured. A IEC61850 server including scheduling is
included in this demo application. It has the following features:

• Mapping of values into a IEC 61850 Server

• Minimalistic Scheduling, based on IEC 61850-90-10

11.1. Mapping of OpenMUC channels to server
attributes
A server usually provides measurement values. This is done using server mappings. Server
mappings can be added to any channel. Let us for example look into the power_grid channel that is
updated via CSV values and will update the IEC 61850 server as specified in the server mapping.

78

http://localhost:4200
http://localhost:8456

Listing 15. channels.xml

<channel id="power_grid">
 <description>Grid Power</description>
 <channelAddress>grid_power</channelAddress>
 <unit>W</unit>
 <samplingInterval>5s</samplingInterval>
 <loggingInterval>5s</loggingInterval>
 <serverMapping id="iec61850">
IED_Controllable_DER/ActPow_GGIO1.AnOut1.mxVal.f:MX</serverMapping>
 <!-- the above makes this measurement accessible on the IEC61850 server -->
</channel>

11.1.1. Testing the server

To observe the value changes, start up an IEC 61850 client, connect to your OpenMUC IEC 61850
demo application (defaults: 127.0.01, port: 10003) and navigate to attribute
IED_Controllable_DER/ActPow_GGIO1.AnOut1.mxVal.f:MX to observer the changing values.

Figure 13. OpenMUC Channels Access Tool Web view and IEC61850bean Client GUI showing grid power of
-8313W

The IEC 61850 bean library includes a cli and gui client that is well suited for this purpose.

11.2. Scheduling
IEC61850-90-10 defines scheduling that is designed for resilience, allowing to schedule control
ahead of time. This implementation is limited to time based control of several schedules according
to their priority. This way, several control schedules that are active at a time can be merged into one
as the picture below shows:

79

./images/61850-server-mapping.png
https://www.beanit.com/iec-61850/

Figure 14. Merging of several schedules according to their priorities to a result schedule

Before T=1, no schedule is active, so the output remains at 0*. At T=1, schedule 1 starts its execution.
Since it is the only active schedule, it has highest priority and forwards its values to the controller
output. At T=5, schedule 2 becomes active. It has higher priority as compared to schedule 1, so its
values are forwarded to the controller as the result schedule. Schedules 3 and 4 have higher
priority as schedule 2, so they overrule it during they are active from T=7…10 respective T=10..12.
After T=14, no schedule is active, so the output goes to 0* again.

* this example assumes there is no custom reserve schedule active.

Supported features:

• supports several schedules with different priorities

• supports several schedule controllers, allowing to control several output values

• supports schedules with time precision of 1s (applies for both, interval and start)

• supports reserve schedules that are always active

Limitations:

• reserve schedules must hold exactly 1 control value

• only ASG (float/double) schedules were tested so far

• schedule node behaviour is only implemented in a basic manner, only the output of the
schedule controller is updated. References to the active schedule, the states of the schedules,
etc… will not be updated as specified in IEC 61850-90-10.

80

./images/61850-schedules.png

11.2.1. Configuration

This server implements a very basic version of IEC 61850 scheduling. The logic is mostly abstracted,
yet OpenMUC requires some minimal configuration effort. Again, the demo application has the
minimal required channels preconfigured:

Listing 16. channels.xml

 <!-- general settings for ActPowSchedule -->
 <device id="iec61850-schedule-controller">
 <channel id="ActPowSchedule_FSCC1_SCHEDULE_CONTROLLER_OUTPUT">
 <serverMapping id="iec61850">
IED_Controllable_DER/ActPow_FSCC1.ValMV.mag.f:MX</serverMapping>
 </channel>
 <channel id="ActPowSchedule_FSCC1_RESERVE_SCHEDULE_VALUE">
 <serverMapping id="iec61850"
>IED_Controllable_DER/ActPow_Res_FSCH01.ValASG001.setMag.f</serverMapping>
 </channel>
 </device>

 <!-- Schedule1 enable and disable channels, belongs to ActPowSchedule schedule
controller -->
 <device id="iec61850-schedule1">
 <channel id="ActPowSchedule_FSCH01_SCHEDULE_ENABLE">
 <serverMapping id="iec61850"
>IED_Controllable_DER/ActPow_FSCH01.EnaReq.Oper.ctlVal:CO</serverMapping>
 <valueType>BOOLEAN</valueType>
 </channel>
 <channel id="ActPowSchedule_FSCH01_SCHEDULE_DISABLE">
 <serverMapping id="iec61850"
>IED_Controllable_DER/ActPow_FSCH01.DsaReq.Oper.ctlVal:CO</serverMapping>
 <valueType>BOOLEAN</valueType>
 </channel>
 </device>

 <!-- Schedule2 enable and disable channels, belongs to ActPowSchedule schedule
controller -->
 <device id="iec61850-schedule2">
 <channel id="ActPowSchedule_FSCH02_SCHEDULE_ENABLE">
 <serverMapping id="iec61850"
>IED_Controllable_DER/ActPow_FSCH02.EnaReq.Oper.ctlVal:CO</serverMapping>
 <valueType>BOOLEAN</valueType>
 </channel>
 <channel id="ActPowSchedule_FSCH02_SCHEDULE_DISABLE">
 <serverMapping id="iec61850"
>IED_Controllable_DER/ActPow_FSCH02.DsaReq.Oper.ctlVal:CO</serverMapping>
 <valueType>BOOLEAN</valueType>
 </channel>
 </device>

81

The above example hints that the mappings follow a naming convention, as all server mappings
start with "ActPowSchedule_", indicating that all schedules belong to the same schedule controller*:
The naming convention is that the grouping to a schedule controller is done by OpenMUC
channelId starts, until the first underscore ("_"): In our example, all mappings belong to the
"ActPowSchedule_"-group controlling the active power of the demo device.

* a schedule controller merges schedules according to their priority and forwards the control to a
single target output

Table 23. Schedule Server Mappings

Mapping Naming convention Mapping
target

Required Description

Schedule
enable

channelId ends with
"SCHEDULE_ENABLE"

EnaReq.Op
er.ctlVal:C
O

1 per
schedule

References the enable "switch" of
the schedule. Operating this node
will read the required parameters
(priority, start date, execution
interval, control values) from the
server and start execution the
schedule

Schedule
disable

channelId ends with
"SCHEDULE_DISABLE"

DsaReq.Op
er.ctlVal:C
O

1 per
schedule

References the disable "switch" of
the schedule. Operating this node
will stop execution the schedule

Controller
output

channelId ends with
"SCHEDULE_CONTROL
LER_OUTPUT"

Output of
the
schedule
controller

1 per
control
group

The referenced node will be
updated to hold the control value
with of the schedule with the
highest priority

Reserve
schedule
reference

channelId ends with
"RESERVE_SCHEDULE_
VALUE"

Control
value of
the reserve
schedule

0-1 per
control
group

Uses the specified value as default
output for the schedule controller
("control group"). Defaults to
control value of 0 if no schedule
controller is specified.

In order to add a new control target, e.g. reactive power, both the server configuration file iec61850-
server-example.cid and channels.xml need to be modified. In the server configuration, a new
schedule controller node and at least one schedule node need to be added. Then mappings to these
nodes need to be added into channels.xml.

11.2.2. Testing scheduling

Testing scheduling can be done with any IEC 61850 client. In OpenMUC, IEC 61850 bean library is
used, which implements both server and client. The IEC61850ClientScheduleWriterExampleApp is
shipped with the openmuc-server-iec61850 package and can be used as a example application
create two overlapping schedules with different priorites that will be executed by the demo
application:

82

https://www.beanit.com/iec-61850/

Figure 15. Log during execution of tree schedules: reserve schedule with priority=10, ActPow_FSCH01 with
priority=100 and ActPow_FSCH02 with priority=111.

12. Modbus Server
The modus service allows you to access to a OpenMUC channel by ModbusTCP protocol. For
accessing a channel through Modbus the channel has to be mapped with serverMapping and the
Modbus Server bundle has to copied in the bundle folder.

ServerMapping ID: modbus

Table 24. serverMapping

Primary
Table

BOOLEAN SHORT INT FLOAT DOUBLE LONG BYTEARR
AY[n]

INPUT_RE
GISTER

x x x x x x -

HOLDING_
REGISTERS

x x x x x x -

DISCRETE_INPUTS and COIL are not supported yet.

Server Settings

Server settings are done in the load/org.openmuc.framework.server.modbus.ModbusServer.cfg.

Table 25. Server settings

Setting Mandato
ry

Values Default Description

address no string 127.0.0.1 IP address to listen on

poolsize no int 3 Listener thread pool size, only has affects
with TCP and RTUTCP

port no int 502 Port to listen on

unitId no int 15 UnitId of the slave

type no string tcp Connection type (TCP, RTUTCP or UDP)

If you run ModbusTCP Server without root-privileges you have to allow Felix to bind Port 502 with
setcap.

83

./images/61850-demo-app.png

Listing 17. Console e.g. bash

setcap 'cap_net_bind_service=+ep' /path/to/program

12.1. Example
Listing 18. channels.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?> <configuration>

 <driver id="virtual">
 <device id="sample_device">

 <channel id="sample_channel_1">
 <serverMapping id="modbus">HOLDING_REGISTERS:1000:INTEGER</serverMapping>
 <valueType>INTEGER</valueType>
 </channel>

 <channel id="sample_channel_2">
 <serverMapping id="modbus">HOLDING_REGISTERS:1002:BOOLEAN</serverMapping>
 <valueType>BOOLEAN</valueType>
 </channel>

 <channel id="sample_channel_3">
 <serverMapping id="modbus">INPUT_REGISTERS:1000:DOUBLE</serverMapping>
 </channel>

 <channel id="sample_channel_4">
 <serverMapping id="modbus">INPUT_REGISTERS:1004:LONG</serverMapping>
 <valueType>LONG</valueType>
 </channel>

 </device>
 </driver>

</configuration>

Listing 19. properties/org.openmuc.framework.server.modbus.ModbusServer.cfg

(Optional) Connection type, could be TCP, RTUTCP, UDP or SERIAL
type=tcp
(Optional) Port to listen on
port=5502
(Optional) IP address to listen on
address=127.0.0.1
(Optional) UnitId of the slave
unitId=15
(Optional) Listener thread pool size, only has affects with TCP and RTUTCP
poolsize=3

84

(Optional)
serialPortName=/dev/ttyUSB0
(Optional)
baudRate=9600
(Optional)
flowControlIn=0
(Optional)
flowControlOut=0
(Optional)
databits=8
(Optional)
stopbits=1
(Optional)
parity=0
(Optional)
echo=false

13. Tools

13.1. Apache Felix Web Console
The Apache Felix Web Console is a Web Based Management Console for OSGi Frameworks. You can
use it e.g. for managing your OpenMUC framework bundle during runtime. For more information
about the Web Console read the Felix Apache documentation. With this console you can also
configure the configuration of all bundles which are using the openmuc-lib-osgi bundle or
reconfigure the .

Figure 16. Apache Felix Web Console Bundles List

The default local link to the console is http://127.0.0.1:8888/system/console, the credentials are the
same like in OpenMUC WebUI.

85

https://felix.apache.org/documentation/subprojects/apache-felix-web-console.html
./images/apache-console-bundle-list.png
http://127.0.0.1:8888/system/console

13.1.1. Dependencies

You need the following bundles:

 osgibundles group: "org.apache.felix", name: "org.apache.felix.webconsole",
version: "4.5.4"
 osgibundles group: "commons-io", name: "commons-io",
version: "2.6"
 osgibundles group: "commons-fileupload", name: "commons-fileupload",
version: "1.4"
 osgibundles group: "commons-codec", name: "commons-codec",
version: "1.15"

These bundles are already integrated in the demo framework. For additional functionality you can
add further apache felix web console plugins.

86

	OpenMUC User Guide
	Table of Contents
	1. Intro
	2. Quick Start
	2.1. Install OpenMUC
	2.2. Start the Demo
	2.3. WebUI Walk Through

	3. Tutorials
	3.1. Build a Simple M-Bus Data Logger
	3.2. Develop a Customised Application
	3.3. Develop a Customised WebUI Plugin

	4. Architecture
	4.1. File Structure of the Distribution
	4.2. Folder framework/
	4.3. Devices and Channels
	4.4. Configuration via channels.xml
	4.5. Sampling, Listening and Logging

	5. OpenMUC Start Script
	5.1. Start OpenMUC
	5.2. Stop OpenMUC
	5.3. Restart OpenMUC
	5.4. Reload OpenMUC Configuration
	5.5. Update Bundles
	5.6. Remote Shell
	5.7. Auto Start at Boot Time

	6. Drivers
	6.1. Install a Driver
	6.2. Modbus
	6.3. M-Bus (wired)
	6.4. M-Bus (wireless)
	6.5. IEC 60870-5-104
	6.6. IEC 61850
	6.7. IEC 62056 part 21
	6.8. KNX
	6.9. eHZ
	6.10. SNMP
	6.11. CSV
	6.12. Aggregator
	6.13. Math
	6.14. REST/JSON
	6.15. AMQP
	6.16. MQTT

	7. Dataloggers
	7.1. ASCII Logger
	7.2. AMQP Logger
	7.3. MQTT Logger
	7.4. SlotsDB Logger
	7.5. SQL Logger

	8. Libraries
	8.1. AMQP
	8.2. MQTT
	8.3. OSGI
	8.4. Parser-Service
	8.5. SSL

	9. WebUI
	9.1. Plugins
	9.2. Context Root
	9.3. HTTPS
	9.4. Custom Plugins
	9.5. Visualisation

	10. REST Server
	10.1. Requirements
	10.2. Accessing channels
	10.3. CORS

	11. IEC 61850 Server
	11.1. Mapping of OpenMUC channels to server attributes
	11.2. Scheduling

	12. Modbus Server
	12.1. Example

	13. Tools
	13.1. Apache Felix Web Console

