
OpenMUC User Guide

Fraunhofer Institute for Solar Energy Systems ISE

openmuc.org

Table of Contents

1. Intro . 1

2. Architecture . 1

3. Quick Start . 3

3.1. Framework Files . 3

3.2. Starting the Demo . 4

3.3. Configuration . 4

3.4. Simple Demo App . 5

3.5. WebUI Walk Through . 5

3.5.1. Add a New Channel . 7

4. Distribution . 8

5. Running OpenMUC . 8

6. Install a Driver . 9

6.1. Use a Driver with Serial Communication . 9

7. Devices and Channels . 9

7.1. Configuration . 10

7.2. Sampling, Listening and Logging . 11

8. Drivers . 12

8.1. Modbus . 12

8.1.1. Modbus TCP and Wago . 16

8.2. M-Bus (wired) . 17

8.3. M-Bus (wireless) . 18

8.4. IEC 61850 . 18

8.5. IEC 62056 part 21 . 19

8.6. DLMS/COSEM . 19

8.7. KNX . 20

8.8. eHZ . 21

8.9. SNMP . 21

8.10. Aggregator . 22

9. The WebUI . 24

9.1. Plugins . 24

9.2. HTTPS . 24

10. REST Server . 24

10.1. Requirements . 25

10.2. Accessing channels . 25

11. Authors . 26

1. Intro

OpenMUC is a software framework based on Java and OSGi that simplifies the development of customized

monitoring, logging and control systems. It can be used as a basis to flexibly implement anything from simple data

loggers to complex SCADA systems. The main goal of OpenMUC is to shield the application developer of monitoring

and control applications from the details of the communication protocol and data logging technologies. Third parties

are encouraged to create their own customized systems based on OpenMUC. OpenMUC is licensed under the GPL. If

you need an individual license please contact us.

For a short overview of OpenMUC’s goals and features please visit our overview page. This guide is a detailed

documentation on how OpenMUC works and how to use it.

2. Architecture

The following image depicts the software layers of an OpenMUC system.

Figure 1. OpenMUC software layers

The OpenMUC framework runs within an OSGi environment which in turn is being run by a Java Virtual Machine.

The underlying operating system and hardware can be chosen freely as long as it can run a Java 7 VM.

OpenMUC consists essentially of various software modules which are implemented as OSGi bundles that run in the

OSGi environment and communicate over OSGi services. The following figure illustrates the main modules that make

up OpenMUC.

OpenMUC User Guide

1

https://www.openmuc.org/contact/
https://www.openmuc.org/openmuc/
images/openmuc-software-layers.png

Figure 2. OpenMUC modules

All modules except for the data manager are optional. Thus by selecting the modules you need you can easily create

your own customized and lightweight system.

The different modules in the picture are now further explained:

1. The data manager represents the core and center of OpenMUC. Virtually all other OpenMUC modules (e.g.

drivers, data loggers, servers, applications and web interface plugins) communicate with it through OSGi services.

The data manager gets automatically notified when new drivers or data loggers get installed. OpenMUC

applications communicate with devices, access logged data or change the configuration by calling service

functions provided by the data manager. It is therefore the data manager that shields the application programmer

from the details of the communication and data logging technology. What the data manager does is mostly

controlled through a central configuration.

2. The channel configuration holds the user defined data channels and its parameters. Data channels are the

frameworks representation of data points in connected devices. Amongst others the channel configuration holds

the following information:

a. communication parameters that the drivers require

b. when to sample new data from connected devices

c. when to send sampled data to existing data logger(s) for efficient persistent storage.

The configuration is stored in the file conf/channels.xml. You may add or modify the configured channels by

manually editing the channels.xml file or through the channel configurator web interface.

3. A driver is used by the data manager to send/get data to/from a connected device. Thus a driver usually

implements a communication protocol. Several communication drivers have already been developed (e.g. IEC

OpenMUC User Guide

2

images/openmuc-bundles-with-numbers.png

61850, ModbusTCP, KNX, DLMS/COSEM). Many drivers use standalone communication libraries (e.g.

OpenIEC61850, jMBus) developed by the OpenMUC team. These libraries do not depend on the OpenMUC

framework and can therefore be used by any Java application. New communication drivers for OpenMUC can be

easily developed by third parties.

4. A data logger saves sampled data persistently. The data manager forwards sampled data to all available data

loggers if configured to do so. Data loggers are specifically designed to store time series data for short storage and

retrieval times. Note that this usually means that they are not SQL-based. OpenMUC currently includes two data

loggers. The ASCII data logger saves data in a human readable text format while SlotsDB saves data in a more

efficient binary format.

5. If all you want is sample and log data then you can use the OpenMUC framework as it is and simply configure it to

your needs. But if you want to process sampled data or control a device you will want to write your own

application. Like all other modules your application will be an OSGi bundle. In your application you can use the

DataAccessService and the ConfigService provided by the data manager to access sampled and logged data. You

may also issue immediate read or write commands. These are forwarded by the data manager to the driver. The

configuration (when to sample and to log) can also be changed during run-time by the application. At all times the

application only communicates with the data manager and is therefore not confronted with the complicated details

of the communication technology being used.

6. If your application is located on a remote system (e.g. a smart phone or an Internet server) then the data and

configuration can be accessed through an OpenMUC server. At the moment OpenMUC provides a RESTful web

service for this purpose.

7. Finally the OpenMUC framework provides a web user interface (WebUI) for tasks such as configuration,

visualization of sampled data or exporting logged data. The web interface is modular and provides a plug-in

interface. This way developers may write a website that integrates into the main menu of the web interface. The

WebUI is mostly for configuration and testing purposes. Most companies will want to create their own individual

UI.

3. Quick Start

This chapter will give you an idea of how OpenMUC works by showing you how to run and adjust the demo

framework which is part of the OpenMUC distribution. OpenMUC requires Java 7 or higher, therefore make sure it is

installed on your machine.

3.1. Framework Files

The folder "framework" contains a configured OpenMUC framework that can be used as a basis to create your own

customized OpenMUC framework for your task. The framework folder contains the following important files and

folders:

felix

The main Apache Felix OSGi jar which is run to start OpenMUC.

OpenMUC User Guide

3

bin

Run scripts for Linux/Unix and Windows.

bundle

Contains all bundles that are started by the Felix OSGi framework. Note that this folder does not contain all

available OpenMUC bundles but only a subset for demonstration purposes.

log

Log files produced by the running framework.

conf

Various configuration files of the framework.

3.2. Starting the Demo

First open a terminal and go to the folder named "framework".

To start OpenMUC on Linux run:

./bin/openmuc start -fg

To start OpenMUC on Window run:

bin\openmuc.bat

This will start the Apache Felix OSGi framework which in turn starts all the bundles located in the "bundle" folder.

Among the bundles that are started is the Apache Gogo shell. This shell is entered once you run OpenMUC.

The shell can be used to start, stop, and reload bundles among other things. You can stop and exit the OSGi framework

any time by typing "ctrl+d" or "stop 0".

Now type "lb" to list all installed bundles.

You will see that among the active bundles are the Simple Demo App, the OpenMUC core bundles, two data loggers

(ASCII and SlotsDB) as well as the CSV driver.

3.3. Configuration

One of the most important configuration files is conf/channels.xml. This file tells the OpenMUC Data Manager which

data it shall sample, listen for, and log. This is done by configuring so called channels. Each channel represents a

single data point whose value can be an integer, double, string or byte array.

The demo’s channels.xml configures among others channels whose values are read by the CSV driver. The channels

are sampled/read and logged every 5 seconds.

OpenMUC User Guide

4

For more information about the channels.xml see the configuration chapter.

3.4. Simple Demo App

The simple demo app demonstrates how you can access channels and their records from an application. The app reads

data from channels of the CSV driver, calculates new values from them and writes them to other channels. The app

can be used as starting point to create your own OpenMUC application.

3.5. WebUI Walk Through

This section leads you through the framework’s WebUI.

Open a browser (works currently best with Google Chrome) and enter the URL "http://localhost:8888". This leads you

to the login page. The default user is admin and the default password is admin as well.

After successful login the OpenMUC Dashboard opens, which provides various plugins for configuration and

visualization. A full description of the plugins can be found in the chapter Web UI.

Let us first look at the Channel Access Tool which provides the current value of each channel and also enables you to

write values. Click on Channel Access Tool to open this plugin. The next page lists all available devices which are

currently configured in OpenMUC. Select the home1 and proceed with Access selected.

Figure 3. WebUI device selection

On the next page you will see the latest records of all channels of home1. Each record consists of a data value, a

timestamp when it was sampled and a quality flag.

OpenMUC User Guide

5

images/webui-channelaccesstool-device-selection.png

Figure 4. WebUI channel access tool

Let’s have look at the Data Plotter. To get to the Data Plotter click on Applications next to the OpenMUC logo and

select Data Plotter.

Figure 5. WebUI data plotter

Select the Live Data Plotter. To view the live data select the channels of your choice and click Plot Data.

OpenMUC User Guide

6

images/webui-channelaccesstool-channels.png
images/webui-dataplotter.png

Figure 6. WebUI live plotter

3.5.1. Add a New Channel

All channels currently defined get their data using the CSV driver from the file "csv-driver/home1.csv". That file

contains additional data. So let us now add a new channel to the OpenMUC configuration using the channel scan

feature.

In the WebUI go to the Channel Configurator. Click the tab "Devices". In the row of device "home1" click on the

search/scan icon. It shows you all the channels available in that device. Once the scan has completed a list of available

channels is shown. In this tutorial we select the channel with address "pv_energy_production". Click "add channels".

Now the channel overview opens where we can find our selected channel. In the last step of the configuration we click

on the edit icon of the channel and set the parameters logging interval and sampling interval to 5000 ms and change

the unit to kWh.

You can now check that the new channel was added to the "conf/channels.xml" file.

After submitting the channel configuration we go back to the dashboard and open the Channel Access Tool. Here we

select our home1 device and continue with access selected. Now we able to see the current values of the

pv_energy_production channel.

The logged data can be found in openmuc/framework/data/ascii/<currentdate>_5000.dat

OpenMUC User Guide

7

images/webui-dataplotter-live.png

4. Distribution

The distribution contains the following important files and folders:

build/libs-all

All modules/bundles that make up the OpenMUC framework

dependencies

Information on the external dependencies of the OpenMUC framework. Also contains the RXTX library

(repacked as a bundle) which is needed by many OpenMUC drivers based on serial communication.

projects

All sources of the OpenMUC framework. You can easily change and rebuild OpenMUC using Gradle.

framework

A ready to use OpenMUC demo framework that is introduced next.

5. Running OpenMUC

To start OpenMUC on Linux run:

./bin/openmuc start

This runs OpenMUC as a background process. If you want to run OpenMUC in the foreground run:

./bin/openmuc start -fg

To start OpenMUC under Window run:

bin\openmuc.bat

The Linux start script is a sophisticated bash script that can be used to start, stop, restart OpenMUC. The Windows run

script is a simple bat file that starts OpenMUC. The following explanations will focus on using OpenMUC in a Linux

environment as it is the more common scenario.

Starting OpenMUC really means running the Felix OSGi Framework by executing

java -jar felix/felix.jar

The Felix OSGi Framework will then start all bundles located in the "bundle" folder.

When you start OpenMUC in the foreground you will enter the Felix Gogo shell. From the shell you can start, stop

and reload bundles among many other things. To quit the shell and stop the framework press ctrl+d or enter "stop 0".

OpenMUC User Guide

8

If you ran OpenMUC as a background process you can access the Gogo shell using the telnet:

netcat 127.0.0.1 6666

or using the openmuc run script

./bin/openmuc remote-shell

Pressing ctrl+d will exit the remote shell but not stop the openmuc framework.

To stop OpenMUC run:

./bin/openmuc stop

6. Install a Driver

When you want to use a new driver you have to copy the corresponding jar file from the folder "build/libs-all/" to the

"bundle" folder of the framework. Many drivers are "fat jars" which include their dependencies. An exception is the

RXTX library which cannot be packed with the jars.

6.1. Use a Driver with Serial Communication

When you need to use a driver that uses serial communication you have to copy the RXTX bundle to the frameworks

"bundle" folder.

cp ../dependencies/rxtx/rxtxcomm_api-2.2pre2.jar ./bundle/

Additionally you need to install librxtx-java:

sudo apt-get install librxtx-java

The serial ports /dev/tty* are only accessible to members belonging to the group dialout. We therefore have to add our

user to that group. E.g. using:

sudo adduser <yourUserName> dialout

7. Devices and Channels

OpenMUC works on the basis of channels. A channel basically represents a single data point. Some examples for a

channel are the metered active power of a smart meter, the temperature of a temperature sensor, any value of digital or

analog I/O module or the some manufacture data of the device. Thus a channel can represent any kind of data point.

OpenMUC User Guide

9

The following picture illustrates the channel concept.

OpenMUCs Channel Concept

7.1. Configuration

The conf/channels.xml file is the main configuration file for OpenMUC. It tells the OpenMUC framework which

channels it should log and sample. It contains a hierarchical structure of drivers, devices and channels. A driver can

have one or more devices and devices can have one or more channels. Following listing shows a sample configuration

to illustrate the hierarchical structure. The driver, device and channel options are explained afterwards.

Listing 1. channels.xml structure

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<configuration>
 <logger>loggerId</logger>

 <driver id="driver_x">
 <!-- driver options -->
 <device>
 <!-- device options -->
 <channel>
 <!-- channel options -->
 </channel>
 <channel>
 <!-- channel options -->
 </channel>
 </device>
 </driver>
</configuration>

The available driver settings, device settings and channel settings can be found in the Javadoc of DriverConfig.java,

DeviceConfig.java and ChannelConfig.java respectively.

Default Data Logger

OpenMUC User Guide

10

images/openmuc_concept.png
https://www.openmuc.org/openmuc/javadoc/

You can define a default data logger by adding a logger element with the id of a data logger to the configuration. If

available, that data logger is used to read logged values. The ids of data loggers shipped with the OpenMUC

Framework are defined in the "Data Loggers" chapter. If no logger with the defined id is available, or the logger

element is missing from the configuration, an arbitrary available logger is used to read logged values. Only one default

logger may be defined. If multiple logger elements exists, only the first one is evaluated.

This configuration only affects reading of already logged values. Channels are still logged by all available loggers.

7.2. Sampling, Listening and Logging

• sampling is when the data manager frequently asks a driver to retrieve a channel value.

• listening is when the driver listens on a channel and forwards new values to the data manager.

• logging is when the data manager forwards the current sampled value to the data loggers that are installed. The

data loggers then store the data persistently

The following examples will give you a better understanding of these three settings.

Listing 2. Example 1: Just Sampling

<channel>
 <id>channel1</id>
 <channelAddress>dummy/channel/address/1</channelAddress>
 <samplingInterval>4s</samplingInterval>
</channel>

In example 1 the channel is sampled every 4 seconds which means the data manager requests every 4 seconds the

current value from the driver.

Listing 3. Example 2: Sampling and Logging

<channel>
 <id>channel2</id>
 <channelAddress>dummy/channel/address/2</channelAddress>
 <samplingInterval>4s</samplingInterval>
 <loggingInterval>8s</loggingInterval>
</channel>

Example 2 extends example 1 by an additional logging. The logging interval is set to 8 seconds which means that

every 8 seconds the last sampled value is stored in the database. In this case every second sampled value is stored

because the sampling interval is 4 seconds. To log every sampled value the sampling interval and logging interval need

to be the same.

OpenMUC User Guide

11

Listing 4. Example 3: Just Listening

<channel>
 <id>channel3</id>
 <channelAddress>dummy/channel/address/3</channelAddress>
 <listening>true</listening>
</channel>

In example 3 listening instead of sampling is used. This means that the driver reports a new channel value to the data

manager when the value has changed for example.

Listing 5. Example 4: Listening and Logging

 <channel>
 <id>channel4</id>
 <channelAddress>dummy/channel/address/4</channelAddress>
 <listening>true</listening>
 <loggingInterval>8s</loggingInterval>
</channel>

Example 4 extends example 3 by an additional logging.

 When listening is true and additional a sampling interval is defined then the sampling is ignored.

8. Drivers

8.1. Modbus

Modbus Homepage: http://www.modbus.org

Modbus Protocol Specifications: http://www.modbus.org/specs.php

Modbus Master Simulator modpoll: http://www.modbusdriver.com/modpoll.html

The Modbus driver supports RTU, TCP and RTU over TCP.

Table 1. Configuration Synopsis

TCP (ethernet) RTU (serial) RTUTCP (serial over
ethernet)

ID modbus

Device Address <ip>[:<port>] <serial port> <ip>[:<port>]

Settings <type> <type>:<encoding>:<baudrate>:<databits>:<p
arity>:<stopbits>:<echo>:<flowControlIn>:<f
lowControlOut>

<type>

Channel Address <UnitId>:<PrimaryTable>:<Address>:<Datatyp>

DeviceAddress

For TCP and RTUTCP

The DeviceAddress is specified by an IP address and an optional port. If no port is specified, the driver uses the

OpenMUC User Guide

12

http://www.modbus.org
http://www.modbus.org/specs.php
http://www.modbusdriver.com/modpoll.html

modbus default port 502.

For RTU:

The DeviceAddress is specified by a serial port like /dev/ttyS0.


The driver uses the jamod library which itself uses the rxtx library for serial communication.

Therefor the librxtx-java package needs to be installed on the system. Furthermore the user needs

to be in the groups dialout and plugdev

Settings

Table 2. Settings

Config Description/ Values

<type> RTU|TCP|RTUTCP

<encoding> SERIAL_ENCODING_RTU

<baudrate> Integer value: e.g.: 2400, 9600, 115200

<databits> DATABITS_5, DATABITS_6, DATABITS_7, DATABITS_8

<parity> PARITY_EVEN, PARITY_MARK, PARITY_NONE, PARITY_ODD, PARITY_SPACE

<stopbits> STOPBITS_1, STOPBITS_1_5, STOPBITS_2

<echo> ECHO_TRUE, ECHO_FALSE

<flowControlIn> FLOWCONTROL_NONE, FLOWCONTROL_RTSCTS_IN,
FLOWCONTROL_XONXOFF_IN

<flowControlOut> FLOWCONTROL_NONE, FLOWCONTROL_RTSCTS_OUT,
FLOWCONTROL_XONXOFF_OUT

Listing 6. Example Settings

<channelAddress>
RTU:SERIAL_ENCODING_RTU:38400:DATABITS_8:PARITY_NONE:STOPBITS_1
:ECHO_FALSE:FLOWCONTROL_NONE:FLOWCONTROL_NONE
</channelAddress>

ChannelAddress

The ChannelAddress consists of four parts: UnitId, PrimaryTable, Address and Datatyp which are explained in detail

in the following table.

Table 3. Parameter Description

Parameter Description

UnitId In homogenious architecture (when just MODBUS TCP/IP is used)
On TCP/IP, the MODBUS server is addressed by its IP address; therefore, the MODBUS Unit
Identifier is useless. The value 255 (0xFF) has to be used. In heterogeneous architecture
(when using MODBUS TCP/IP and MODBUS serial or MODBUS+)
This field is used for routing purpose when addressing a device on a MODBUS+ or
MODBUS serial line sub-network. In that case, the “Unit Identifier” carries the MODBUS
slave address of the remote device. The MODBUS slave device addresses on serial line are
assigned from 1 to 247 (decimal). Address 0 is used as broadcast address. Note: Some
MODBUS devices act like a bridge or a gateway and require the UnitId even if they are
accessed through TCP/IP. One of those devices is the Janitza UMG. To access data from the
Janitza the UnitId has to be 1.

OpenMUC User Guide

13

Parameter Description

PrimaryTable PrimaryTable defines the which part of the device memory should be accessed. Valid values:
COILS, DISCRETE_INPUTS, INPUT_REGISTERS, HOLDING_REGISTERS

Address Address of the channel/register. Decimal integer value - not hex!

Datatyp Valid values: BOOLEAN, SHORT, INT, FLOAT, DOUBLE, LONG, BYTEARRAY[n] (n =
number of REGISTERS not BYTES, 1 Register = 2 Bytes!)

Primary Tables and Channel Address

Valid Address Parameter Combinations

Since COILS and DISCRETE_INPUTS are used for bit access, only the data type BOOLEAN makes sense in

combinations with of one of these. INPUT_REGISTERS and HOLDING_REGISTERS are used for register access.

There is also a difference between reading and writing. Only COILS and HOLDING_REGISTERS are readable and

writable. DISCRETE_INPUTS and INPUT_REGISTERS are read only. The following table gives an overview of

valid parameter combinations of PrimaryTable and Datatyp.

Table 4. Valid Address Parameters for reading a channel

Primary
Table

BOOLEAN SHORT INT FLOAT DOUBLE LONG BYTEARRA
Y[n]

COILS x - - - - - -

DISCRETE_I
NPUTS

x - - - - - -

INPUT_REG
ISTERS

- x x x x x x

HOLDING_
REGISTERS

- x x x x x x

Table 5. Valid Address Parameters for writing a channel

Primary
Table

BOOLEAN SHORT INT FLOAT DOUBLE LONG BYTEARRA
Y[n]

COILS x - - - - - -

DISCRETE_I
NPUTS

- - - - - - -

OpenMUC User Guide

14

../images/driver_modbustcp_address.png

Primary
Table

BOOLEAN SHORT INT FLOAT DOUBLE LONG BYTEARRA
Y[n]

INPUT_REG
ISTERS

- - - - - - -

HOLDING_
REGISTERS

- x x x x x x

Listing 7. Examples for valid addresses

<channelAddress>255:INPUT_REGISTERS:100:SHORT</channelAddress>
<channelAddress>255:COILS:412:BOOLEAN</channelAddress>

Listing 8. Examples for invalid addresses

<channelAddress>255:INPUT_REGISTERS:100:BOOLEAN</channelAddress> (BOOLEAN
doesn't go with INPUT_REGISTERS)
<channelAddress>255:COILS:412:LONG</channelAddress> (LONG does not go with
COILS)

Function Codes (more detailed information about how the driver works)

The driver is based on the Java Modbus Library (jamod) which provides read and write access via modbus. Following

table shows which modbus function code is used to access the data of the channel.

Table 6. Relation between function code and channel address

jamod Method Modbus Function
Code

Primary Table Access Java Data Type

ReadCoilsRequest FC 1 Read Coils Coils RW boolean

ReadInputDiscretesRe
quest

FC 2 Read Discrete
Inputs

Discrete Inputs R boolean

ReadMultipleRegisters
Request

FC 3 Read Holding
Registers

Holding Registers RW short, int, double,
long, float, bytearray[]

ReadInputRegistersRe
quest

FC 4 Read Input
Registers

Input Registers R short, int, double,
long, float, bytearray[]

WriteCoilRequest FC 5 Write Single
Coil

Coils RW boolean

WriteMultipleCoilsRe
quest

FC 15 Write Multiple
Coils

Coils RW boolean

WriteMultipleRegister
sRequest

FC 6 Write Single
Registers

Holding Registers RW short, int, double,
long, float, bytearray[]

WriteMultipleRegister
sRequest

FC 16 Write Multiple
Registers

Holding Registers RW short, int, double,
long, float, bytearray[]

Example

<channelAddress>255:INPUT_REGISTERS:100:SHORT</channelAddress> will be accessed
via function code 4.

OpenMUC User Guide

15

http://jamod.sourceforge.net

8.1.1. Modbus TCP and Wago


Till now the driver has been tested with some modules of the Wago 750 Series with the Fieldbus-

Coupler 750-342

If you want to use the Modbus TCP driver for accessing a Wago device you first need to know how the process image

is build. From the process image you can derive the register addresses of your Wago modules (AO, AI, DO, DI). You

find detailed information about the process image in WAGO 750-342 Manual on page 46 and 47.

The following Examples are based on figure Wago 750-342 Process Image

*Example 1: Read AI 2 from first (left) 472-module (Register Address 0x0001)

<channelAddress>255:INPUT_REGISTERS:1:SHORT</channelAddress>

Example 2: Read DI 3 from first (left) 472-module (Register Address 0x0003)

<channelAddress>255:DISCRETE_INPUTS:3:BOOLEAN</channelAddress>

Example 3: Write AO 1 from first (left) 550-module (Register Address 0x0000/0x0200)

For writing only the +0x0200 addresses should be used! Since the driver accepts only a decimal channelAddress

0x0200 must be converted to decimal. The resulting address would be:

<channelAddress>255:HOLDING_REGISTERS:512:SHORT</channelAddress>

Example 4: Write DO 2 from 501-module (Register Address 0x0000/0x0201)

For writing only the +0x0200 addresses should be used! Since the driver accepts only a decimal channelAddress

0x0201 must be converted to decimal. The resulting address would be:

<channelAddress>255:COILS:513:BOOLEAN</channelAddress>

Example 5: Read back DO 2 from 501-module (Register Address 0x0201)

<channelAddress>255:COILS:513:BOOLEAN</channelAddress> or
<channelAddress>255:DISCRETE_INPUTS:513:BOOLEAN</channelAddress>

Wago 750-342 Process Image

OpenMUC User Guide

16

http://www.wago.com/wagoweb/documentation/750/eng_manu/coupler_controller/m07500342_00000000_0en.pdf

8.2. M-Bus (wired)

M-Bus is communication protocol to read out meters.

Table 7. Configuration Synopsis

ID mbus

Device Address <serial_port>:<mbus_address>

Settings [<baudrate>][:timeout]

Channel Address <dib>:<vib>

Device Address

<serial_port> - The serial port should be given that connects to the M-Bus converter. (e.g. /dev/ttyS0, /dev/ttyUSB0 on

Linux).

OpenMUC User Guide

17

images/modbus_wago_process_image.png

<mbus_address> - The mbus adress can either be the the primary address or secondary address of the meter. The

primary address is specified as integer (e.g. 1 for primary address 1) whereas the secondary address consits of 8 bytes

that should be specified in hexadecimal form. (e.g. e30456a6b72e3e4e)

Settings

<baudrate> - If left empty the default is used: "2400"

<timeout> - Defines the read timeout in ms. Default is 2500 ms. Example: t5000 for timeout of 5 seconds

Channel Address

Shall be of the format <dib>:<vib> in a hexadecimal string format (e.g. 04:03 or 02:fd48)

8.3. M-Bus (wireless)

Wireless M-Bus is communication protocol to read out meters and sensors.

Table 8. Configuration Synopsis

ID wmbus

Device Address <serial_port>:<secondary_address>

Settings <transceiver> <mode> [<key>]

Channel Address <dib>:<vib>

Device Address

<serial_port> - The serial port used for communication. Examples are /dev/ttyS0 (Linux) or COM1 (Windows)

<secondary_address> - The secondary address consists of 8 bytes that should be specified in hexadecimal form. (e.g.

e30456a6b72e3e4e)

Settings

<transceiver> - The transceiver being used. It can be amber or rc for modules from RadioCrafts.

<mode> - The wM-Bus mode can be S or T.

<key> - The key in hexadecimal form.

Channel Address

Shall be of the format <dib>:<vib> in a hexadecimal string format (e.g. 04:03 or 02:fd48)

8.4. IEC 61850

IEC 61850 is an international communication standard used mostly for substation automation and controlling

distributed energy resources (DER). The IEC 61850 driver uses the client library from the OpenIEC61850 project.

OpenMUC User Guide

18

ID iec61850

Device Address <host>[:<port>]

Settings [-a <authentication parameter>] [-lt <local t-selector>] [-rt <remote t-selector>]

Channel Address <bda reference>:<fc>

Channel Address

The channel address should be the IEC 61850 Object Reference and the Functional Constraint of the Basic Data

Attribute that is to be addressed separated by a colon. Note that an IEC 61850 timestamp received will be converted to

a LongValue that represents the milliseconds since 1970. Some information is lost during this conversion because the

IEC 61850 timestamp is more exact.

Settings

The defaults for TSelLocal and TSelRemote are "00" and "01" respectively. You can also set either TSelector to the

empty string (e.g. "-lt -rt"). This way they will be omitted in the connection request.

8.5. IEC 62056 part 21

The IEC 62056 part 21 driver can be used to read out meter via optical interface

Table 9. Configuration Synopsis

ID iec62056p21

Device Address <serial_port>

Settings

Channel Address <data_set_id>

Device Address

<serial_port> - The serial port should be given that connects to the M-Bus converter. (e.g. /dev/ttyS0, /dev/ttyUSB0 on

Linux).

Channel Address

<data_set_id> - Id of the data set. It is usually an OBIS code of the format A-B:C.D.E*F or on older EDIS code of the

format C.D.E.that specifies exactly what the value of this data set represents.

8.6. DLMS/COSEM

DLMS/COSEM is a international standardized protocol used mostly to communicate with smart meter devices. The

DLMS/COSEM driver uses the client library developed by the jDLMS project. Currently, the DLMS/COSEM driver

supports communication via HDLC and TCP/IP using Logical Name Referencing to retrieve values from the device.

Dependencies: rxtxcomm_api-2.1.7.jar (optional)

OpenMUC User Guide

19

ID dlms

Device Address hdlc:<serial-port>[:<server-physical-port>]:<server-logical>:<client-logical>
tcp:<server-ip>[:<server-port>]:<server-logical>:<client-logical>

Settings [SendDisconnect=<disconnect>];[UseHandshake=<handshake>];[..]

Channel Address <class-id>/<reference-id>/<attribute-id>

Interface Address

The interface address consists of all elements the driver needs to uniquely identify and address a physical smart meter

and format depends on the used protocol. Refer to the following table for the format of the interface address.

Protocol Physical-Connection Example

hdlc <serial-port>[:<physical-device-id>] hdlc:ttyUSB0 or hdlc:ttyUSB0:16

tcp <server-ip>[:<server-port>] tcp:16:192.168.200.25 or
tcp:16:192.168.200.25:4059

Settings

Settings are separated by a semi-colon. The available settings are determined by the used protocol, defined as first

parameter of the device address. All possible settings with a short description and default values are listed in the

following table.

Options Protocol Values Default Description

PW all string Authorization password to access the smart meter device

SendDisconnect all true/false true Send a disconnect message at DLMS layer on
disconnecting from device. Set this flag to false if the
remote device is expecting the disconnect message at a
lower layer (like HDLC)

UseHandshake HDLC true/false true Use initial handshake to negotiate baud rate

Baudrate HDLC integer Maximum supported baud rate (0 = no maximum). If
UseHandshake = false, this value will be used to
communicate with the device and has to be set

ForceSingle all true/false false Forces every attribute to be requested individually. This
option has to be enabled to support Kamstrup 382 smart
meter devices

8.7. KNX

KNX is a standardised protocol for intelligent buildings. The KNX driver uses KNXnet/IP to connect to the wired

KNX BUS. The driver supports group read and writes and is also able to listen to the BUS. The driver uses the

calimero library.

Table 10. Configuration Synopsis

ID knx

Device Address knxip://<host_ip>[:<port>] knxip://<device_ip>[:<port>]

Settings [Address=<Individual KNX address (e. g. 2.6.52)>];[SerialNumber=<Serial number>]

Channel Address <Group Adress>:<DPT_ID>

Device Address

OpenMUC User Guide

20

The device address consists of the host IP and the IP of the KNX tunnel or router.

Channel Address

The channel address consist of the group address you want to monitor and the corresponding data point ID. A data

point consists of a main number and a subtype. For example a boolean would be represented by the main number 1

and a switch by the subtype 001, the DPT_ID of a switch is 1.001.

8.8. eHZ

OpenMUC driver for SML and IEC 62056-21

Dependencies: rxtxcomm_api-2.1.7.jar

Table 11. Configuration Synopsis

ID ehz

Device Address sml://<serialPort> or iec://<serialPort> e.g. sml:///dev/ttyUSB0

Settings

Channel Address <OBIScode> e.g. 10181ff (not 1-0:1.8.1*255)

scanForDevices() and scanForChannels will return the specific configuration.

8.9. SNMP

Simple Network Management Protocol (SNMP) is an Internet-standard protocol for monitoring and management of

devices on IP networks.

Dependencies: snmp4j-2.2.5.jar

Table 12. Configuration Synopsis

ID snmp

Device Address IP/snmpPort

Settings settings string

Channel Address SNMP OID address

Device Address

IP address and available SNMP port of the target device should be provided as Device Address.

Example for Device Address:

192.168.1.1/161

Settings

All settings are stored in "SnmpDriverSettingVariableNames" enum.

OpenMUC User Guide

21

Table 13. Setting Parameters

SNMPVersion "SNMPVersion" enum contains all available values

USERNAME string

SECURITYNAME string

AUTHENTICATIONPASSPHRASE is the same COMMUNITY word in SNMP V2c

PRIVACYPASSPHRASE string

SNMPVersion

SNMPVersion is an enum variable containing valid SNMP versions. (V1, V2c, V3)

Example for valid settings string:

SNMPVersion=V2c:USERNAME=public:SECURITYNAME=public:AUTHENTICATIONPASSPHRASE=pas
sword

In order to read specific channel, corresponding SNMP OID shall be passed.

Example for SNMP OID:

1.3.6.1.2.1.1.1.0

For scanning SNMP enabled devices in the network, range of IP addresses shall be provided. This functionality is

implemented only for SNMP V2c.

8.10. Aggregator

The Aggregator which performs aggregation of logged values from a channel. It uses the DriverService and the

DataAccessService. It is therefore a kind of OpenMUC driver/application mix. The aggregator is fully configurable

through the channels.xml config file.

Table 14. Configuration Synopsis

ID aggregator

Device Address virtual device e.g "aggregatordevice"

Settings

Channel Address <sourceChannelId>:<aggregationType>[:<quality>]

Channel Address

<sourceChannelId> - id of channel to be aggregated

<aggregationType> -

• AVG: calculates the average of all values of interval (e.g. for average power)

• LAST: takes the last value of interval (e.g. for energy)

OpenMUC User Guide

22

• DIFF: calculates difference of first and last value of interval

• PULS_ENERGY,<pulses per Wh>,<max counter>: calculates energy from pulses of interval (e.g. for pulse

counter/meter). Example: PULSE_ENERGY,10,65535

<quality> - Range 0.0 - 1.0. Percentage of the expected valid/available logged records for aggregation. Default value is

1.0. Example: Aggregation of 5s values to 15min. The 15min interval consists of 180 5s values. If quality is 0.9 then at

least 162 of 180 values must be valid/available for aggregation. NOTE: The missing/invalid values could appear as

block at the beginning or end of the interval, which might be problematic for some aggregation types

Example:

Channel A (channelA) is sampled and logged every 10 seconds.

 <channelid="channelA">
 <samplingInterval>10s</samplingInterval>
 <loggingInterval>10s</loggingInterval>
 </channel>

Now you want a channel B (channelB) which contains the same values as channel A but in a 1 minute resolution by

using the average as aggregation type. You can achieve this by simply adding the aggregator driver to your channel

config file and define a the channel B as follows:

 <driver id="aggregator">
 <device id="aggregatordevice">
 <channelid="channelB">
 <channelAddress>channelA:avg</channelAddress>
 <samplingInterval>60s</samplingInterval>
 <loggingInterval>60s</loggingInterval>
 </channel>
 </device>
 </driver>

The new (aggregated) channel has the id channelB. The channel address consists of the channel id of the original

channel and the aggregation type which is channelA:avg in this example. OpenMUC calls the read method of the

aggregator every minute. The aggregator then gets all logged records from channelA of the last minute, calculates the

average and sets this value for the record of channelB. NOTE: It’s recommended to specify the samplingTimeOffset

for channelB. It should be between samplingIntervalB - samplingIntervalA and samplingIntervalB. In this example: 50

< offset < 60. This constraint ensures that values are AGGREGATED CORRECTLY. At hh:mm:55 the aggregator gets

the logged values of channelA and at hh:mm:60 respectively hh:mm:00 the aggregated value is logged.

OpenMUC User Guide

23

 <driver id="aggregator">
 <device id="aggregatordevice">
 <channelid="channelB">
 <channelAddress>channelA:avg</channelAddress>
 <samplingInterval>60s</samplingInterval>
 <samplingTimeOffset>55s</samplingTimeOffset>
 <loggingInterval>60s</loggingInterval>
 </channel>
 </device>
 </driver>

9. The WebUI

9.1. Plugins

Plotter

Plugin which provides plotter for visualisation of current and historical data

Channel Access Tool

Plugin to show current values of selected channels. Provides possibility to set values.

Channel Configurator

Plugin for channel configuration e.g. channel name, sampling interval, logging interval

Media Viewer

Plugin which allows to embed media files into OpenMUC’s WebUI

User Configurator

Plugin for user configuration

9.2. HTTPS

You can access the WebUI over https as well: https://localhost:8889. To make the framework more secure you could

disable http by setting org.apache.felix.http.enable in the conf/system.properties file to false.

10. REST Server

The openmuc-server-restws bundle manages a RESTful web service to access all registered channels of the

framework. The RESTful web service is accessed by the same port as the web interface mentioned in Chapter 2.


The address to access the web service using the provided demo/framework folder is

http://localhost:8888/rest/

OpenMUC User Guide

24

https://localhost:8889
http://localhost:8888/rest/

10.1. Requirements

In order to start the RESTful web service, the following bundle must be provided:

• Bundle that provides an org.osgi.service.http.HttpService service. In the demo framework, that service is provided

by the org.apache.felix.http.jetty bundle.

This bundles is already provided by the demo framework. The RESTful web service will start automatically with the

framework without additional settings.

10.2. Accessing channels

The latest record of a single channel can be accessed, by sending a GET request at the address: http://server-

address/rest/channels/{id} where {id} is replaced with the actual channel ID. The result will be latest record object of

the channel encoded in JSON with the following structure:

Listing 9. Record JSON

{
 "timestamp" : time_val, /*milliseconds since Unix epoch*/
 "flag" : flag_val, /*status flag of the record as string*/
 "value" : value_val /*actual value. Omitted if "flag" != "valid"*/
}

You can access logged values of a channel by adding /history?from=fromTimestamp&until=untilTimestamp to the

channel address, fromTimestamp and untilTimestamp are both milliseconds since Unix epoch (1970-01-01 00:00:00).

The result is a collection of records encoded as JSON.

Additionally, the records off all available channels can be read in one go, by omitting the ID from the address. The

result is a collection of channel objects encoded in JSON using this structure:

Listing 10. ChannelCollection JSON

[
 {
 "id" : channel1_id, /*ID of the channel as string*/
 "record" : channel1_record /*current record. see Record JSON*/
 },
 {
 "id" : channel2_id,
 "record" : channel2_record
 }
 ...
]

New records can be written to channels by sending a PUT request at the address that represents a channel. The data in

the put request is a record encoded as specified in Record JSON above.

If HTTPS is used to access the REST server then HTTP basic authentication is required. The login credentials are the

OpenMUC User Guide

25

http://server-address/rest/channels/{id}
http://server-address/rest/channels/{id}

same as the one used to log into the web interface of the OpenMUC Framework.

11. Authors

Developers:

• Stefan Feuerhahn

• Marco Mittelsdorf

• Dirk Zimmermann

• Albrecht Schall

Former developers:

• Michael Zillgith

• Karsten Müller-Bier

• Simon Fey

• Frederic Robra

• Philipp Fels

OpenMUC User Guide

26

	OpenMUC User Guide
	Table of Contents
	1. Intro
	2. Architecture
	3. Quick Start
	3.1. Framework Files
	3.2. Starting the Demo
	3.3. Configuration
	3.4. Simple Demo App
	3.5. WebUI Walk Through
	3.5.1. Add a New Channel

	4. Distribution
	5. Running OpenMUC
	6. Install a Driver
	6.1. Use a Driver with Serial Communication

	7. Devices and Channels
	7.1. Configuration
	7.2. Sampling, Listening and Logging

	8. Drivers
	8.1. Modbus
	8.1.1. Modbus TCP and Wago

	8.2. M-Bus (wired)
	8.3. M-Bus (wireless)
	8.4. IEC 61850
	8.5. IEC 62056 part 21
	8.6. DLMS/COSEM
	8.7. KNX
	8.8. eHZ
	8.9. SNMP
	8.10. Aggregator

	9. The WebUI
	9.1. Plugins
	9.2. HTTPS

	10. REST Server
	10.1. Requirements
	10.2. Accessing channels

	11. Authors

